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Error Analysis

In the laboratory we measure physical quantities.

All measurements are subject to some
uncertainties.

Error analysis is the study and evaluation of these
uncertainties.

When mathematically manipulating measured
guantities, a proper manipulation is required for
the uncertainties.




Errors In Measurements

0

Measure length with ruler. %
Measure voltage with digital multimeter. ﬁ
Measure time. (=

Measure radiation decay (counting statistics).
Stated instrumentation accuracy.

Counting ?? pfg  op .
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Types of Uncertainties

« RANDOM - arising from a random effect.
— Example: radioactive nuclear decay.

« SYSTEMATIC — arising from a systematic effect.
— Example: instrument calibration error.

Examples

Random: Small Random: Small Random: Large Random: Large
Systematic: Small Systematic: Large Systematic: Small Systematic: Large




Reporting Uncertainties

5

« (Measured value of x)=x + X A ///\

— Example V=2.5+0.2 \/
« Round error to one significant digit.

_W — =9.82+0.02 m/s?

 The last significant digit of the quantity
should be of the same order of the

uncertainty.
14350 2A — 1=4.4+0.2 A
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Counting Statistics |

For a process with very small success probability p<<1, if we carry n
experiments, the distribution having x successes is Binomial. It can be
approximated by the Poisson distribution.

(pn)’e ™
X!
The average and variance of this distribution is pn.

In nuclear decay, large number of nuclei make up a sample or numbers
of tries (n) but only a relatively small fraction of them give rise to a
success event (small p).

In a counting experiment we record the number of counts, n in a given
counting time t. The distribution of n is Poisson:

N"e ™
p(n) =
Nl

Where N is the expected counts (the mean) and uncertainty & =+/N

p(x) =




Countlng Statistics 1
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For large N the Poisson distribution can be approximated by the
Gaussian distribution.

Example : we make N experiment and record x; counts in each. What
Is the average number of counts and expected error of the average?

1S 1 Sy 2L e (X
G:N\/Z(‘R) =t =N =y



Measurement Distribution |

 In most cases the distribution of a measured quantity is Gaussian (or
Normal when «=+x ). ,
1 4=

G(x,u,o0)= Gme

* Where u Is the average and o is the standard deviation.

= 6(x . 0)xd o*=[ (x- 1) G(x,1,0)dx

oIf X is sampled from a Normal distribution then
*68% of the samples will be between p-c to u+o.
*95.5% between pu-2c to p+2c.

99.7% between p-3c to u+3c.

G(X,1,0)
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Error Propagation | gﬁ

Consider a function q(x,y;) 1=1,...N. s <
The first order Taylor series expansion of g(x,y;) at the point (X, ¥)
_ . O O _
qi=q(xi,yi)zq(x,y)+a—q (Xi—X)+—q‘ (vi—y)
Xz 7 Nz
We can calculate the mean of q(x;,y;) :
R 1|, . 0q . 0q i
Q=—2 0 ~— ax, V) +— =-X)+—| (Y;-Y)
Which can be written as:
gl L oo, da L3 o e 1 o
q—NngN;q(x,y)ﬂLaxx’yNizzl‘,(xi X) + yNiZﬂ’,(yi y)

From the definition of the average Z(x —i)=o,é(yi -9=0 and thus

a=->axn =A%~ jg=q(X,Y)
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Error Propagation 11 S

« The variance of g Is defined as : aj = ii(qi —q)° o

: i N 4=
- Evaluating the variance we get: '

—Z{ (X—X)+5(y. T ( j Z(x—‘) +( j Z(y. y)?

,900q 1 h
+ E@WZ( X)(Yi = Y)

We define the covariance:

ny - %iNzl(Xi _)_()(y| _ y)

» And finally the standard deviation o Is given by:

2 2
G;:(G_QJ o2 +| ) 52,209,
OX oy % OX oy
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Error Propagation — Examples |

In many cases we can assume that the variables are independent. For a
function with n variables q(x;,x,,....x,) the variance is given by:
2
2 . (3_q 2
Oq = ;(8Xij O
Using this equation, we can derive simple helpful relations for the
propagation of errors:

Addition and subtraction: u=xz+y Z—u =1 %u =1 = AU =/AX + Ay’
X
., ou
Multiplication by a constant: U= Ax o A = Au= AAX

2 2 2
Multiplication or division: u=xy or u=2 (ﬂ) {ﬂ} +(ﬂj
y u X y

11



Error Propagation — Example 11

we measured V=1.51+0.02 V across a resistor with R=900+5 Q2 What
IS the current I.

I :\L —E =1.67778x107° A
900

R
Use the error propagation for division, the fractional error of 1 is:

- (83 - ) (3 -omeo

The errorinlisthen Al =1 A—I —0.01436x1.67778x107°=0.024x102 A

We report: |:1.68ﬂ:0.02 mA.
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Covariance

« A covariance value that is different from zero indicates that data are
correlated. Here is an example.

ORIGIN:=1 1 N

25 93 o = (X )—()( —)

34 96 Xy — N z : i yi y

x:=| 35 y:=| 100 N := length(X) =1

30 98

21 92
Xay = Mean(x) YXay = 29 Yay := mean(y) Yav=95.8
Oy = \/var(x) oy =5.329 Gy :=\/var(y) oy =2.993

L
Oyxy = NZ (Xi - Xav)(Yi - Yav) Oxy = 14
i=1
i:=1.N
T T T
100 [~ o —
Vi 0
ooo =
m]
m]
% I l l
20 25 30 35 40

Assume w e w ant to find the average sum <z >=<x>+<y>
Zay =Yav T Yav Z,y=124.8

without covariance with covariance
, 2 2 , 2 2
ozl:= oy + oy 6z2:=[Oy + Gy + 2:0yy

ozl=6.112 0z2=8.085 13



section of the same isotope.
» Which value should I use ?

Corss sections [barns]

Discrepant measurements

4 laboratories measured the absorption cross

Laboratory

bo

2
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Average and Variance

Given N measurements of a quantity x;, we can estimate the mean of the
distribution of x by calculating the average:

1
x_ﬁizﬂlxi

The estimate for the variance of the distribution is: P
1 N
2 = X. — X 2 p
o’ =~ _12( —X)

The estimated standard deviation is o.

The more samples we have (larger N), the averagex will get closer to the real
average x of the distribution.

15



Weighted Average

When we measure the quantity x; with an associated error o;, then the best
estimate of the of that quantity is calculated by the weighted average:

N

Zwixi

5 (=i

X, =% —
Wi

i=1

Where the weight is taken as w =§

The error in that estimated averageiis be given by:
1

w N

W

i=1

O

This calculation gives more weight to measurements with reported small
errors.
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Average and Variance - Example

ORIGIN:=1

MY

Following are results of the same measurement from several students
13 0.5
12 0.4 N = length (3

X:i= c = := length (X

16 2 ddd g
11.5 0.3

Non Weighted

N
1 4
Xav::_'z % =13.125 std = |=- X — %) [std =1.746
N 2, (57
Weighted
i:=1..N wie——

i 17



Modeling of Data-|

In many cases we have some theoretical background on the physical
behavior of the phenomena we are measuring.

In these cases we can try to check if the experiment agrees with the
theory and also extract parameters from it.

For example we would like to measure the attenuation of gamma rays
through a slab of Al. We setup the following experiment:

==

Thickness x

We repeat the experiment N times (N>3) for several thickness x; of
Aluminum

We have no background (or corrected for it).

Source
(B Detector

18



\
Modeling of Data-I| fg%g/é

If we count for sufficient time we except:

C =1e"
Where C, are the counts for sample 1, x is the attenuation coefficient in
units of cm* and x; is the sample thickness.
We take the log of both sides of the the equation we get:

log(C;) =log(l,) — xx

Define y;=log(C;) b=-u a=log(l,)
The equation can be rewritten as:

y. =bx. +a
Find a procedure that can use all our measurements of y; to find a and
b that best fit the data.

Knowing the counting error in C;, we will try to estimate the error in a
and b.

19



|_east-Squares Fitting |

Given a series of N measurement of x; and y; + ;, Fit the model y;=a+bx; to the
data.

We would like find a and b that will minimize the expression.

yi—a—-biX.
X Z( = )?

To do that we take the flrst derlvatlve with respect to a and b and set the
derivatives equal to zero:

We can define: ob = o

=1 O-i =1 i =1 i
N 2 N
X Xy
— | — | |
SXX . Z—z Sxy = Z 2
i-1 Oj i-1 Oj

20



| east-Squares Fitting 11

We can then rewrite the equations as:

aS+bS, =S,
aS, +bS, =S,

y

We solve the equations for a and b:

_ 548,58, o 58y =SS,
A A

A= SSxx _ (Sx)2

a

The error in a and b can be estimated by propagating the errors in the

above equations (independent case) , the result is:

S, \F
O, =.— Oy, =.|—
A A

21



|_east-Squares Fitting - Example

2 431.219
4 184.518
X=| 6 yl=| 8106 cli=4/yl N,:= length(x)
8 31.792
10 9.71

Transform the data
—

y:=In(yD) = 311 Remember : y = I, exp(—xx) = In(y) = In(y,) — 2
Eit the data
N N N N 2 N
- X Yi (%) Xi-Yi
S::Z ——  Sx:= Sy::z SXX::Z Sxy::z
e 2 7 2 2 2
i=1 (o)) i=1 (o)) i=1 (o) i=1 (o) i=1 (o)
A= S-S g DXV =SXSY - SSy-SxSy o [SX oy |~
A A A A

Transforming the results of the fit

ni=-b Gy = Op lg := exp(a) o0 := exp(a)-oa

1= 0.44 6, =002 lp=1041 o0 =T8

j=1.100 xx:= 01 Ij:= lp-exp(—p-x)

1><103 T T T T

i
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