

A Review of Uncertainty Analysis
MANE-4430 LINEAR ACCELERATOR LAB

Error Analysis

- In the laboratory we measure physical quantities.
- All measurements are subject to some uncertainties.
- Error analysis is the study and evaluation of these uncertainties.
- When mathematically manipulating measured quantities, a proper manipulation is required for the uncertainties.

Errors in Measurements

- Measure length with ruler.
- Measure voltage with digital multimeter.
- Measure time.
- Measure radiation decay (counting statistics).
- Stated instrumentation accuracy.
- Counting ??

Types of Uncertainties

- RANDOM - arising from a random effect. - Example: radioactive nuclear decay.
- SYSTEMATIC - arising from a systematic effect. - Example: instrument calibration error.

Examples

Random: Small Systematic: Small

Random: Small Systematic: Large

Random: Large Systematic: Small

Random: Large
Systematic: Large

Reporting Uncertainties

- (Measured value of $x)=x \pm \delta x$
- Example $V=2.5 \pm 0.2$
- Round error to one significant digit.
$-g=9.82 \pm 02385 \mathrm{~m} / \mathrm{s}^{2} \longrightarrow g=9.82 \pm 0.02 \mathrm{~m} / \mathrm{s}^{2}$
- The last significant digit of the quantity should be of the same order of the uncertainty.
$\mp=4.350 .2 \mathrm{~A} \longrightarrow I=4.4 \pm 0.2 \mathrm{~A}$

Counting Statistics I

- For a process with very small success probability $p \ll 1$, if we carry n experiments, the distribution having x successes is Binomial. It can be approximated by the Poisson distribution.

$$
p(x)=\frac{(p n)^{x} e^{-p n}}{x!}
$$

- The average and variance of this distribution is $p n$.
- In nuclear decay, large number of nuclei make up a sample or numbers of tries (n) but only a relatively small fraction of them give rise to a success event (small p).
- In a counting experiment we record the number of counts, n in a given counting time t. The distribution of n is Poisson:

$$
p(n)=\frac{N^{n} e^{-N}}{n!}
$$

- Where N is the expected counts (the mean) and uncertainty $\sigma=\sqrt{N}$

Counting Statistics II

- For large N the Poisson distribution can be approximated by the Gaussian distribution.
- Example : we make N experiment and record x_{i} counts in each. What is the average number of counts and expected error of the average?

$$
\begin{gathered}
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\sigma=\frac{1}{N} \sqrt{\sum_{i=1}^{N}\left(\sqrt{x_{i}}\right)^{2}}=\frac{1}{N} \sqrt{\sum_{i=1}^{N} x_{i}}=\frac{1}{N} \sqrt{N \bar{X}}=\sqrt{\frac{\bar{x}}{N}}
\end{gathered}
$$

Measurement Distribution I

- In most cases the distribution of a measured quantity is Gaussian (or Normal when $\sigma=\sqrt{x}$).

$$
G(x, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

- Where μ is the average and σ is the standard deviation.

$$
\mu=\int_{-\infty}^{\infty} G(x, \mu, \sigma) x d x \quad \sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} G(x, \mu, \sigma) d x
$$

-If x is sampled from a Normal distribution then $\bullet 68 \%$ of the samples will be between $\mu-\sigma$ to $\mu+\sigma$.
$\cdot 95.5 \%$ between $\mu-2 \sigma$ to $\mu+2 \sigma$.
$\cdot 99.7 \%$ between $\mu-3 \sigma$ to $\mu+3 \sigma$.

Error Propagation I

- Consider a function $q\left(x_{i} y_{i}\right) \quad I=1, \ldots N$.

- The first order Taylor series expansion of $q\left(x_{i} y_{i}\right)$ at the point (\bar{x}, \bar{y})

$$
q_{i}=q\left(x_{i}, y_{i}\right) \approx q(\bar{x}, \bar{y})+\left.\frac{\partial q}{\partial x}\right|_{\bar{x}, \bar{y}}\left(x_{i}-\bar{x}\right)+\left.\frac{\partial q}{\partial y}\right|_{\bar{x}, \bar{y}}\left(y_{i}-\bar{y}\right)
$$

- We can calculate the mean of $q\left(x_{i} y_{i}\right)$:

$$
\bar{q}=\frac{1}{N} \sum_{i=1}^{N} q_{i} \approx \frac{1}{N} \sum_{i=1}^{N}\left[q(\bar{x}, \bar{y})+\left.\frac{\partial q}{\partial x}\right|_{\bar{x}, \bar{y}}\left(x_{i}-\bar{x}\right)+\left.\frac{\partial q}{\partial y}\right|_{\overline{\bar{x}}, \bar{y}}\left(y_{i}-\bar{y}\right)\right]
$$

- Which can be written as:

$$
\bar{q}=\frac{1}{N} \sum_{i=1}^{N} q_{i} \approx \frac{1}{N} \sum_{i=1}^{N} q(\bar{x}, \bar{y})+\left.\frac{\partial q}{\partial x}\right|_{\bar{x}, \bar{y}} \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)+\left.\frac{\partial q}{\partial y}\right|_{\overline{\bar{x}}, \bar{y}} \frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)
$$

- From the definition of the average $\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)=0, \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)=0 \quad$ and thus

$$
\bar{q}=\frac{1}{N} \sum_{i=1}^{N} q(\bar{x}, \bar{y})=\frac{q(\bar{x}, \bar{y})}{N} \sum_{i=1}^{N} 1 \Rightarrow \quad \bar{q}=q(\bar{x}, \bar{y})
$$

Error Propagation II

- The variance of q is defined as : $\sigma_{q}^{2}=\frac{1}{N} \sum_{n=1}^{n}\left(q_{i}-\bar{q}\right)^{2}$
- Evaluating the variance we get:
- Evaluating the variance we get:

$$
\begin{aligned}
& \sigma_{q}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left[\frac{\partial q}{\partial x}\left(x_{i}-\bar{x}\right)+\frac{\partial q}{\partial y}\left(y_{i}-\bar{y}\right)\right]^{2}=\left(\frac{\partial q}{\partial x}\right)^{2} \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} \\
& +2 \frac{\partial q}{\partial x} \frac{\partial q}{\partial y} \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{aligned}
$$

We define the covariance:

$$
\sigma_{x y}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

- And finally the standard deviation σ_{q} is given by:

$$
\sigma_{q}^{2}=\left(\frac{\partial q}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \sigma_{y}^{2}+2 \frac{\partial q}{\partial x} \frac{\partial q}{\partial y} \sigma_{x y}
$$

Error Propagation - Examples I

- In many cases we can assume that the variables are independent. For a function with n variables $q\left(x_{1}, x_{2}, \ldots . x_{n}\right)$ the variance is given by:

$$
\sigma_{q}^{2}=\sum_{i=1}^{n}\left(\frac{\partial q}{\partial x_{i}}\right)^{2} \sigma_{i}^{2}
$$

- Using this equation, we can derive simple helpful relations for the propagation of errors:
- Addition and subtraction: $u=x \pm y \frac{\partial u}{\partial x}=1 \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=1 \Rightarrow \Delta u=\sqrt{\Delta x^{2}+\Delta y^{2}}$
- Multiplication by a constant: $u=A x \frac{\partial u}{\partial x}=A \Rightarrow \Delta u=A \Delta x$
- Multiplication or division: $u=x y$ or $u=\frac{x}{y} \quad\left(\frac{\Delta u}{u}\right)^{2}=\left(\frac{\Delta x}{x}\right)^{2}+\left(\frac{\Delta y}{y}\right)^{2}$

Error Propagation - Example II

- we measured $V=1.51 \pm 0.02 \mathrm{~V}$ across a resistor with $R=900 \pm 5 \Omega$ What is the current I.

$$
I=\frac{V}{R}=\frac{1.51}{900}=1.67778 \times 10^{-3} \mathrm{~A}
$$

- Use the error propagation for division, the fractional error of I is:

$$
\frac{\Delta I}{I}=\sqrt{\left(\frac{\Delta R}{R}\right)^{2}+\left(\frac{\Delta V}{V}\right)^{2}}=\sqrt{\left(\frac{5}{900}\right)^{2}+\left(\frac{0.02}{1.51}\right)^{2}}=0.01436
$$

- The error in I is then $\Delta I=I \frac{\Delta I}{I}=0.01436 \times 1.67778 \times 10^{-3}=0.024 \times 10^{-3} \mathrm{~A}$
- We report: $I=1.68 \pm 0.02 \mathrm{~mA}$.

Covariance

- A covariance value that is different from zero indicates that data are correlated. Here is an example.

As sume w e w ant to find the average sum $\langle\mathrm{z}\rangle=\langle\mathrm{X}\rangle+\langle\mathrm{y}\rangle$

$$
\mathrm{z}_{\mathrm{av}}:=\mathrm{x}_{\mathrm{av}}+\mathrm{y}_{\mathrm{av}}
$$

$$
\mathrm{z}_{\mathrm{av}}=124.8
$$

without covariance with covariance
$\sigma \mathrm{z} 1:=\sqrt{\sigma_{\mathrm{x}}^{2}+\sigma_{\mathrm{y}}^{2}} \quad \sigma \mathrm{z} 2:=\sqrt{{\sigma_{\mathrm{x}}}^{2}+\sigma_{\mathrm{y}}^{2}+2 \cdot \sigma_{\mathrm{xy}}}$

Discrepant measurements

- 4 laboratories measured the absorption cross section of the same isotope.
- Which value should I use ?

Average and Variance

- Given N measurements of a quantity x_{i}, we can estimate the mean of the distribution of x by calculating the average:

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- The estimate for the variance of the distribution is:

$$
\sigma^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

- The estimated standard deviation is σ.
- The more samples we have (larger N), the average $\overline{\bar{x}}$ will get closer to the real average \bar{X} of the distribution.

Weighted Average

- When we measure the quantity x_{i} with an associated error σ_{i}, then the best estimate of the of that quantity is calculated by the weighted average:

$$
\bar{x}_{w}=\frac{\sum_{i=1}^{N} w_{i} x_{i}}{\sum_{i=1}^{N} w_{i}}
$$

- Where the weight is taken as $w_{i}=\frac{1}{\sigma_{i}^{2}}$
- The error in that estimated average is be given by:

$$
\sigma_{w}=\frac{1}{\sqrt{\sum_{i=1}^{N} w_{i}}}
$$

- This calculation gives more weight to measurements with reported small errors.

Average and Variance - Example
 ORIGIN:= 1

Following are results of the same measurement from several students

$$
\mathrm{x}:=\left(\begin{array}{c}
13 \\
12 \\
16 \\
11.5
\end{array}\right) \quad \sigma:=\left(\begin{array}{c}
0.5 \\
0.4 \\
2 \\
0.3
\end{array}\right) \quad \mathrm{N}:=\operatorname{length}(\mathrm{x})
$$

Non Weighted

$$
\mathrm{x}_{\mathrm{av}}:=\frac{1}{\mathrm{~N}} \cdot \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}} \quad \mathrm{x} \quad \mathrm{x}=13.125 \quad:=\sqrt{\frac{1}{\mathrm{~N}} \cdot \sum_{\mathrm{i}=1}^{4}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{av}}\right)^{2}} \text { std }=1.746
$$

Weighted

$$
\mathrm{i}:=1 . . \mathrm{N} \quad \mathrm{w}_{\mathrm{i}}:=\frac{1}{\left(\sigma_{\mathrm{i}}\right)^{2}}
$$

$$
x_{\text {wav }}:=\frac{\sum_{i=1}^{N}\left(w_{i} \cdot x_{i}\right)}{\sum_{i=1}^{N} w_{i}} \quad x_{x_{\text {wav }}=11.974} \quad \sigma_{\text {wav }}:=\frac{1}{\sqrt{\sum_{i=1}^{N} w_{i}}}
$$

$$
\sigma_{\text {wav }}=0.215
$$

Modeling of Data-I

- In many cases we have some theoretical background on the physical behavior of the phenomena we are measuring.
- In these cases we can try to check if the experiment agrees with the theory and also extract parameters from it.
- For example we would like to measure the attenuation of gamma rays through a slab of Al. We setup the following experiment:

- We repeat the experiment N times $(N>3)$ for several thickness x_{i} of Aluminum
- We have no background (or corrected for it).

Modeling of Data-II

- If we count for sufficient time we except:

$$
C_{i}=I_{0} e^{-\mu x_{i}}
$$

- Where C_{i} are the counts for sample i, μ is the attenuation coefficient in units of cm^{-1} and x_{i} is the sample thickness.
- We take the log of both sides of the the equation we get:

$$
\log \left(C_{i}\right)=\log \left(I_{0}\right)-\mu x_{i}
$$

- Define $y_{i}=\log \left(C_{i}\right) \quad \mathrm{b}=-\mu \quad a=\log \left(I_{0}\right)$
- The equation can be rewritten as:

$$
y_{i}=b x_{i}+a
$$

- Find a procedure that can use all our measurements of y_{i} to find a and b that best fit the data.
- Knowing the counting error in C_{i}, we will try to estimate the error in a and b.

Least-Squares Fitting I

- Given a series of N measurement of x_{i} and $y_{i} \pm \sigma_{\mathrm{i}}$, Fit the model $y_{i}=a+b x_{i}$ to the data.
- We would like find a and b that will minimize the expression.

$$
\chi^{2}=\sum_{i=1}^{N}\left(\frac{y_{i}-a-b_{i} x_{i}}{\sigma_{i}}\right)^{2}
$$

- To do that we take the first derivative with respect to a and b and set the derivatives equal to zero:

$$
\begin{aligned}
& \frac{\partial \chi^{2}}{\partial a}=-2 \sum_{i=1}^{N} \frac{y_{i}-a-b x_{i}}{\sigma_{i}}=0 \\
& \frac{\partial \chi^{2}}{\partial b}=-2 \sum_{i=1}^{N} \frac{y_{i}-a-b x_{i}}{\sigma_{i}} x_{i}=0
\end{aligned}
$$

$$
\begin{aligned}
& S \equiv \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \quad S_{x} \equiv \sum_{i=1}^{N} \frac{x_{i}}{\sigma_{i}^{2}} \quad S_{y} \equiv \sum_{i=1}^{N} \frac{y_{i}}{\sigma_{i}^{2}} \\
& S_{x x} \equiv \sum_{i=1}^{N} \frac{x_{i}^{2}}{\sigma_{i}^{2}} \quad S_{x y} \equiv \sum_{i=1}^{N} \frac{x_{i} y_{i}}{\sigma_{i}^{2}}
\end{aligned}
$$

Least-Squares Fitting II

- We can then rewrite the equations as:

$$
\begin{aligned}
& a S+b S_{x}=S_{y} \\
& a S_{x}+b S_{x x}=S_{x y}
\end{aligned}
$$

- We solve the equations for a and b :

$$
\begin{aligned}
& a=\frac{S_{x x} S_{y}-S_{x} S_{x y}}{\Delta} \quad b=\frac{S S_{x y}-S_{x} S_{y}}{\Delta} \\
& \Delta=S S_{x x}-\left(S_{x}\right)^{2}
\end{aligned}
$$

- The error in a and b can be estimated by propagating the errors in the above equations (independent case), the result is:

$$
\sigma_{a}=\sqrt{\frac{S_{x x}}{\Delta}} \quad \sigma_{b}=\sqrt{\frac{S}{\Delta}}
$$

Least-Squares Fitting - Example

$\mathrm{x}=\left(\begin{array}{c}2 \\ 4 \\ 6 \\ 8 \\ 10\end{array}\right) \quad \mathrm{y} 1=\left(\begin{array}{c}431.219 \\ 184.518 \\ 81.06 \\ 31.792 \\ 9.71\end{array}\right) \quad \sigma 1:=\sqrt{\mathrm{y} 1} \quad \quad \mathrm{~N}:=\operatorname{length}(\mathrm{x})$

Transform the data

$\begin{aligned} & \mathrm{y}:=\ln (\mathrm{y} 1) \\ & \text { Fit the data }\end{aligned} \quad \sigma:=\frac{\overrightarrow{\sigma 1}}{\mathrm{y} 1}$$\quad$ Remember : $y=I_{0} \exp (-\mu x) \Rightarrow \ln (y)=\ln \left(y_{0}\right)-\mu x$

$$
\begin{aligned}
& S:=\sum_{i=1}^{N} \frac{1}{\left(\sigma_{i}\right)^{2}} \quad S x:=\sum_{i=1}^{N} \frac{x_{i}}{\left(\sigma_{i}\right)^{2}} \quad S y:=\sum_{i=1}^{N} \frac{y_{i}}{\left(\sigma_{i}\right)^{2}} \quad S x x:=\sum_{i=1}^{N} \frac{\left(x_{i}\right)^{2}}{\left(\sigma_{i}\right)^{2}} \quad S x y:=\sum_{i=1}^{N} \frac{x_{i} \cdot y_{i}}{\left(\sigma_{i}\right)^{2}} \\
& \Delta:=\mathrm{S} \cdot \mathrm{Sxx}-\mathrm{Sx}^{2} \mathrm{a}:=\frac{\mathrm{Sxx} \cdot \mathrm{Sy}-\mathrm{Sx} \cdot \mathrm{Sxy}}{\Delta} \quad \mathrm{~b}:=\frac{\mathrm{S} \cdot \mathrm{Sxy}-\mathrm{Sx} \cdot \mathrm{Sy}}{\Delta} \quad \sigma_{\mathrm{a}}:=\sqrt{\frac{\mathrm{Sxx}}{\Delta}} \quad \sigma_{\mathrm{b}}:=\sqrt{\frac{S}{\Delta}}
\end{aligned}
$$

Transforming the results of the fit

$$
\begin{array}{lccl}
\mu:=-\mathrm{b} & \sigma_{\mu}:=\sigma_{\mathrm{b}} & \mathrm{I}_{0}:=\exp (\mathrm{a}) & \sigma_{\mathrm{I} 0}:=\exp (\mathrm{a}) \cdot \sigma_{\mathrm{a}} \\
\mu=0.44 & \sigma_{\mu}=0.02 & \mathrm{I}_{0}=1041 & \sigma_{\mathrm{I} 0}=78 \\
& & \\
\mathrm{j}:=1 . .100 & \mathrm{xx}_{\mathrm{j}}:=0.1 \cdot \mathrm{j} & \mathrm{I} \\
\mathrm{j}:=\mathrm{I}_{0} \cdot \exp \left(-\mu \cdot \mathrm{xx}_{\mathrm{j}}\right) &
\end{array}
$$

