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Error Analysis

• In the laboratory we measure physical quantities.

• All measurements are subject to some 

uncertainties.

• Error analysis is the study and evaluation of these 

uncertainties.

• When mathematically manipulating measured 

quantities, a proper manipulation is required for 

the uncertainties.
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Errors in Measurements 

• Measure length with ruler.

• Measure voltage with digital multimeter.

• Measure time.

• Measure radiation decay (counting statistics).

• Stated instrumentation accuracy.

• Counting ??
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Types of Uncertainties
• RANDOM – arising from a random effect.

– Example: radioactive nuclear decay.

• SYSTEMATIC – arising from a systematic effect.

– Example: instrument calibration error.

Random: Small

Systematic: Small

Random: Small

Systematic: Large

Random: Large

Systematic: Small

Random: Large

Systematic: Large

Examples
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Reporting Uncertainties

• (Measured value of x)=x ± dx

– Example V=2.5±0.2

• Round error to one significant digit.

– g=9.82±0.02385 m/s2 g=9.82±0.02 m/s2

• The last significant digit of the quantity 
should be of the same order of the 
uncertainty.

– I=4.35±0.2 A I=4.4±0.2 A
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Counting Statistics I

• For a process with very small success probability p<<1, if we carry n
experiments, the distribution having x successes is Binomial. It can be 
approximated by the Poisson distribution.

• The average and variance of this distribution is pn.

• In nuclear decay, large number of nuclei make up a sample or numbers 
of tries (n) but only a relatively small fraction of them give rise to a 
success event (small p). 

• In a counting experiment we record the number of counts, n in a given 
counting time t. The distribution of n is Poisson:

• Where N is the expected counts (the mean) and uncertainty
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Counting Statistics II

• For large N the Poisson distribution can be approximated by the 

Gaussian distribution.

• Example : we make N experiment and record xi counts in each. What 

is the average number of counts and expected error of the average?
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Measurement Distribution I

• In most cases the distribution of a measured quantity is Gaussian (or 

Normal when            ).

• Where m is the average and  is the standard deviation.
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•If x is sampled from a Normal distribution then

•68% of the samples will be between m- to m+.

•95.5% between m-2 to m+2.

•99.7% between m-3 to m+3.
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Error Propagation I

• Consider a function q(xi,yi)      I=1,…N.

• The first order Taylor series expansion of q(xi,yi) at the point

• We can calculate the mean of q(xi,yi) : 

• Which can be written as:

• From the definition of the average                                 and thus
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Error Propagation II
• The variance of q is defined as :

• Evaluating the variance we get:

We define the covariance:

• And finally the standard deviation q is given by:
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Error Propagation – Examples I
• In many cases we can assume that the variables are independent. For a 

function with n variables q(x1,x2,….xn) the variance is given by:

• Using this equation, we can derive simple helpful relations for the 

propagation of errors:

• Addition and subtraction:

• Multiplication by a constant: 

• Multiplication or division:
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Error Propagation – Example II

• we measured V=1.51±0.02 V across a resistor with R=900±5 W What 

is the current I.

• Use the error propagation for division, the fractional error of I is:

• The error in I is then

• We report: I=1.68±0.02 mA.
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Covariance
• A covariance  value that is different from zero indicates that data are 

correlated. Here is an example.
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Discrepant measurements
• 4 laboratories measured the absorption cross 

section of the same isotope.

• Which value should I use ?
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Average and Variance
• Given N measurements of a quantity xi, we can estimate the mean of the 

distribution of x by calculating the average:

• The estimate for the variance of the distribution is:

• The estimated standard deviation is 

• The more samples we have (larger N), the average   will get closer to the real 

average   of the distribution.
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Weighted Average

• When we measure the quantity xi with an associated error i, then the best 

estimate of the of that quantity is calculated by the weighted average:

• Where the weight is taken as 

• The error in that estimated average is be given by:

• This calculation gives more weight to measurements with reported small 

errors. 
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Average and Variance - Example
ORIGIN 1

Following are results of the same measurement from several students
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Modeling of Data-I
• In many cases we have some theoretical background on the physical 

behavior of the phenomena we are measuring.

• In these cases we can try to check if the experiment agrees with the 

theory and also extract parameters from it.

• For example we would like to measure the attenuation of gamma rays 

through a slab of Al. We setup the following experiment:

Thickness x

Source
Detector

Collimator Collimator

Al
Pb Pb

• We repeat the experiment N times (N>3) for several thickness xi of 

Aluminum

• We have no background (or corrected for it).
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Modeling of Data-II
• If we count for sufficient time we except:

• Where Ci are the counts for sample i, m is the attenuation coefficient in 

units of cm-1 and xi is the sample thickness.

• We take the log of both sides of the the equation we get:

• Define

• The equation can be rewritten as:

• Find a procedure that can use all our measurements of yi to find a and 

b that best fit the data. 

• Knowing the counting error in Ci, we will try to estimate the error in a

and b.
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Least-Squares Fitting I
• Given a series of N measurement of xi and yi ± i., Fit the model yi=a+bxi to the 

data.

• We would like find a and b that will minimize the expression.

• To do that we take the first derivative with respect to a and b and set the 

derivatives equal to zero:

• We can define:
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Least-Squares Fitting II
• We can then rewrite the equations as:

• We solve the equations for a and b:

• The error in a and b can be estimated by propagating the errors in the 

above equations (independent case) , the result is:
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Least-Squares Fitting - Example
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