Neutron Capture Measurements and Resonance Parameters of Gadolinium

Y.-R. Kang and M. W. Lee

Dongnam Institute of Radiological and Medical Sciences, Research Center Busan 619-953, Korea

G. N. Kim*

Kyungpook National University, Department of Physics Daegu 702-701, Korea

T.-I. Ro

Dong-A University, Department of Physics Busan 604-714, Korea

Y. Danon and D. Williams

Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace, and Nuclear Engineering Troy, New York 12180-3590

and

G. Leinweber, R. C. Block, D. P. Barry, and M. J. Rapp

Bechtel Marine Propulsion Corporation, Knolls Atomic Power Laboratory P.O. Box 1072, Schenectady, New York 12301

> Received June 6, 2014 Accepted July 15, 2014 http://dx.doi.org/10.13182/NSE14-80

Abstract—Neutron capture measurements were performed with the time-of-flight method at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute (RPI) using isotopically enriched gadolinium (Gd) samples (¹⁵⁵Gd, ¹⁵⁶Gd, ¹⁵⁷Gd, ¹⁵⁸Gd, and ¹⁶⁰Gd). The neutron capture measurements were made at the 25-m flight station with a 16-segment sodium iodide multiplicity detector. After the data were collected and reduced to capture yields, resonance parameters were obtained by a combined fitting of the neutron capture data for five enriched Gd isotopes and one natural Gd sample using the multilevel R-matrix Bayesian code SAMMY. A table of resonance parameters and their uncertainties is presented. We observed 2, 169, 96, and 1 new resonances in ¹⁵⁴Gd, ¹⁵⁵Gd, ¹⁵⁷Gd, and ¹⁵⁸Gd isotopes, respectively. Resonances in the ENDF/B-VII.0 evaluation that were not observed in the current experiment and could not be traced to a literature reference were removed. This includes 11 resonances from the ¹⁵⁶Gd isotope, 1 resonance from ¹⁵⁷Gd, 1 resonance from ¹⁵⁸Gd, and 6 resonances from the ¹⁶⁰Gd isotope.

^{*}E-mail: gnkim@knu.ac.kr

The resulting resonance parameters were used to calculate the capture resonance integrals in the energy region from 0.5 eV to 20 MeV and were compared to calculations obtained when using the resonance parameters from ENDF/B-VII.0 and previous RPI results. The present parameters gave a resonance integral value of 395 ± 2 b, which is ~0.8% higher and ~1.7% lower than that obtained with the ENDF/B-VII.0 parameters and with the previous RPI parameters, respectively.

I. INTRODUCTION

The stable isotopes of gadolinium (Gd) are significant fission products in fast reactors.¹ A major portion of neutron capture cross sections of natural Gd is due to ¹⁵⁵Gd and ¹⁵⁷Gd. Their capture cross sections and resonance parameters in the wider energy range are important in the design of reactors, as well as in nuclear and astrophysics studies.² Accurate knowledge of the neutron cross sections and the resonance parameters for Gd isotopes are of importance to the calculation of reactor characteristics when Gd is used as a burnable poison in commercial light water reactors. The capture cross section is also important to examine the Gd isotopes as a control material for fast reactors.³

Neutron capture experiments on Gd isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. Resonance parameters were extracted by fitting the neutron capture data using the SAMMY multilevel R-matrix Bayesian code.⁴ The default formalism for the SAMMY code is the Reich-Moore approximation, which is based on the idea that capture channels behave quite differently from particle channels.

Most of the strong resonances occur in ¹⁵⁵Gd and ¹⁵⁷Gd isotopes. In these two isotopes, ENDF/B-VII.0 resonance parameters are based on a few experiments, particularly Mughabghab and Chrien,⁵ Simpson,⁶ Møller et al.,⁷ and et al.⁸ Recently, the resonance Fricke parameters for ¹⁵⁵Gd were obtained from capture experiments with the DANCE calorimeter at the Los Alamos Neutron Science Center (LANSCE) in the neutron energy region from 1 eV to 200 eV (Ref. 9). The other high-abundance isotopes, ¹⁵⁶Gd, ¹⁵⁸Gd, and ¹⁶⁰Gd, have few resonances, and resonance parameters for ¹⁵⁸Gd and ¹⁶⁰Gd come from Mughabghab and Chrien⁵ and Rahn et al.¹⁰ The less abundant isotopes are 152 Gd and 154 Gd, which have a natural abundance of 0.2% and 2.1%, respectively. The resonance parameters for ¹⁵²Gd and ¹⁵⁴Gd come from Rahn et al.,¹⁰ Anufriev et al.,¹¹ and Macklin.¹² Many other authors contributed observed resonance energies and/or spin assignments for resonances

energies above 148 eV including Belyaev et al.,¹³ Karzhavina et al.,^{14,15} and Asghar et al.¹⁶ Finally, Leinweber et al.¹⁷ measured resonance parameters of all naturally occurring Gd isotopes at the RPI LINAC facility in the neutron energy region from thermal to 300 eV.

II. EXPERIMENTAL SETUP

II.A. Pulsed Neutrons at RPI

Pulses of neutrons are generated via photoneutron reactions when an ~57-MeV electron beam from the RPI LINAC impinges on a water-cooled tantalum target. Table I gives some details of the experimental conditions including neutron target, overlap filter, pulse repetition rate, flight path length, and channel widths. Descriptions of the water-cooled tantalum target,^{18,19} the capture detector,^{20,21} and the data acquisition system^{20,22} are given in detail elsewhere, so only a brief description is given in the present paper.

The geometry of the bare-bounce neutron target¹⁹ (BBT) used for this measurement is unique in that the tantalum plates are mounted off the neutron beam axis. A 2.5-cm-thick polyethylene moderator is mounted adjacent to the tantalum plates and centered on the neutron beam axis. The moderator effectively slows down the fast neutrons generated in the target through collisions with hydrogen and emits the neutrons at a lower energy. These moderated neutrons are then collimated as they drift down an evacuated flight tube to the sample and detector. In order to remove low-energy neutrons from previous pulses, a 0.397-cm-thick ¹⁰B₄C overlap filter was inserted in the neutron beamline.

The neutron energy for a detected event is determined from the flight time of the neutron using the time-of-flight (TOF) technique and from the precise knowledge of the flight path length. The TOF analyzer used in the experiments was a multihit TOF clock (P7889, Fast ComTec.). The P7889 clock was operating with a 12.8-ns channel width and a total of 328125 channels. It operates as a single-start/multiple-stop device; i.e., a single LINAC burst initiates a countdown cycle,

TABLE I

Experimental Conditions for Gd Capture Measurements

Neutron	Overlap Filter	Average Beam	Beam	Pulse	Channel	Pulse	Flight Path
Producing		Current	Energy	Width	Width	Repetition	Length
Target		(µA)	(MeV)	(ns)	(ns)	Rate (pulse/s)	(m)
BBT (Ref. 19)	Boron carbide	17.3	57	18	12.8	225	25.569 ± 0.006

during which any number of detected events cause the analyzer to record an event. The TOF analyzer has no dead time between time bins to record each event. The overall dead time of the signal-processing electronics was set at 1.125 μ s for capture measurements. During operation of the experiment, data were transferred from the TOF analyzer to the computer memory via direct memory access. The data-taking software is completely menu driven and controls the sample changer, sorts the data into individual spectra, and provides online display of the data being accumulated. Descriptions of the data-taking computer system, data file structure, and data-reduction process are available in Ref. 23.

II.B. Capture Detector

Neutron capture measurements were performed using a capture detector system, which is located at the 25-m flight station of the RPI LINAC. The capture detector^{20–22} is a multiplicity-type scintillation gamma detector containing 20 ℓ of NaI(Tl) divided into 16 optically isolated segments, which forms a 30.5-cm-diameter × 30.5-cmhigh right circular cylinder with an 8.9-cm through hole along its axis. The cylinder is split across its axis into two rings, with each ring divided into eight equal pie-shaped segments. Each segment is hermetically sealed in an aluminum can and is connected to a photomultiplier tube. The neutron beam was collimated to a diameter of 4.76 cm. Neutrons that scatter from the sample are absorbed by a 1.0-cm-thick hollow cylindrical liner fabricated of 99.4 wt% 10B carbide ceramic to reduce the number of scattered neutrons reaching the detector. The detector system discriminates against the 478-keV gamma ray from ${}^{10}B(n;\alpha,\gamma)$ reactions. The capture detector is surrounded by a 15-cm-thick, 7260-kg lead shield to reduce ambient background signals. The capture detector used for the present experiment was located at the east beam tube at a flight path of 25.569 \pm 0.006 m from the BBT (Ref. 19). The flight path length was determined from measurements of precisely known ²³⁸U resonances.

The efficiency of detecting a capture event varies with the number and energy of gammas emitted in a capture event. The efficiency of detecting a single 2-MeV gamma ray is $\sim 75\%$ (Ref. 23). For capture in Gd where typically three to four gamma rays are emitted per capture, the efficiency is typically in excess of 95%. Thus, the capture efficiency is assumed to be the same for all Gd isotopes.

II.C. Samples

In order to avoid the hydroscopic property of oxide power samples, five isotopically enriched Gd metallic samples were used. Two elemental Gd samples with different thicknesses were also used. The isotopic contents of the Gd samples used in the experiments are listed in Table II. The purity of elemental metallic samples was 99.8%. The isotopic abundances of the elemental sample were taken from Ref. 24. The only significant contaminant in the elemental sample was tantalum with a manufacturer-specified content of <0.1%.

Three of the Gd isotopic samples (155Gd, 156Gd, and ¹⁶⁰Gd) were metallic disks with diameters of ~ 18 mm and with thicknesses of ~ 0.1 mm. Two Gd isotopic samples (¹⁵⁷Gd and ¹⁵⁸Gd) were metallic rectangular plates with sizes of 15.22×15.48 mm for 157 Gd and $15.35 \times$ 15.14 mm for ¹⁵⁸Gd and with thicknesses of ~ 0.2 mm. The characteristic details of the Gd samples are given in Table III. The uncertainties in thickness of samples were propagated from multiple measurements of the sample dimensions. The diameter and length measurements are the dominant component of the uncertainties. All samples were mounted in aluminum sample cans. The thickness of aluminum on each of the front and rear faces of each sample was 0.38 mm. The influence of these sample cans, as well as all background, was measured by including empty sample cans in the capture measurements. In order to measure the flight path length and to calibrate the neutron energy, a ²³⁸U sample was also measured.

Samples were precisely positioned at the center of the capture detector by a computer-controlled sample changer. The sample changer accommodated up to eight samples and moved them into the beam one at a time. These included five Gd isotopes, an elemental Gd sample, a ²³⁸U sample for energy calibration, and one empty sample holder for background evaluation.

			Iso	topic Compositio	on (%)		
Sample	¹⁵² Gd	¹⁵⁴ Gd	¹⁵⁵ Gd	¹⁵⁶ Gd	¹⁵⁷ Gd	¹⁵⁸ Gd	¹⁶⁰ Gd
¹⁵⁵ Gd ¹⁵⁶ Gd ¹⁵⁷ Gd ¹⁵⁸ Gd ¹⁶⁰ Gd ^{nat} Gd	$\begin{array}{c} 0.04 \\ < 0.01 \\ < 0.02 \\ < 0.1 \\ < 0.01 \\ 0.20 \end{array}$	$\begin{array}{c} 0.64 \pm 0.02 \\ 0.11 \pm 0.01 \\ 0.16 \pm 0.01 \\ < 0.1 \\ 0.02 \pm 0.00 \\ 2.18 \end{array}$	$\begin{array}{c} 91.74 \ \pm \ 0.10 \\ 1.96 \ \pm \ 0.02 \\ 0.81 \ \pm \ 0.02 \\ 0.96 \ \pm \ 0.05 \\ 0.18 \ \pm \ 0.01 \\ 14.80 \end{array}$	$\begin{array}{c} 5.11 \pm 0.10 \\ 93.79 \pm 0.03 \\ 2.21 \pm 0.03 \\ 1.70 \pm 0.05 \\ 0.32 \pm 0.02 \\ 20.47 \end{array}$	$\begin{array}{c} 1.12 \pm 0.05 \\ 2.53 \pm 0.02 \\ 90.96 \pm 0.08 \\ 3.56 \pm 0.05 \\ 0.43 \pm 0.02 \\ 15.65 \end{array}$	$\begin{array}{c} 0.94 \ \pm \ 0.05 \\ 1.20 \ \pm \ 0.02 \\ 5.08 \ \pm \ 0.05 \\ 92.00 \ \pm \ 0.10 \\ 0.93 \ \pm \ 0.02 \\ 24.84 \end{array}$	$\begin{array}{c} 0.41 \pm 0.02 \\ 0.41 \pm 0.02 \\ 0.80 \pm 0.02 \\ 1.82 \pm 0.05 \\ 98.12 \pm 0.05 \\ 21.86 \end{array}$

TABLE II

Isotopic Compositions of Gd Samples

Sample	Atomic Weight	Mass (mg)	Thickness (mm)	Area (mm ²)	Atoms/b
¹⁵⁵ Gd ¹⁵⁶ Gd ¹⁵⁷ Gd ¹⁵⁸ Gd ¹⁶⁰ Gd <i>nat</i> Gd ^a ²³⁸ U ^a	$\begin{array}{c} 155.0 \pm 0.3 \\ 156.0 \pm 0.1 \\ 156.9 \pm 0.2 \\ 157.8 \pm 0.2 \\ 159.9 \pm 0.1 \end{array}$	$\begin{array}{c} 203.3 \pm 0.2 \\ 197.7 \pm 0.2 \\ 357.5 \pm 0.2 \\ 353.0 \pm 0.2 \\ 193.5 \pm 0.2 \\ 18234.7 \pm 0.5 \end{array}$	$\begin{array}{c} 0.109 \pm 0.003 \\ 0.106 \pm 0.003 \\ 0.205 \pm 0.003 \\ 0.209 \pm 0.005 \\ 0.104 \pm 0.003 \\ 0.254 \\ 0.493 \end{array}$	$\begin{array}{c} 256 \pm 1 \\ 258 \pm 1 \\ 236 \pm 6 \\ 232 \pm 7 \\ 258 \pm 2 \end{array}$	$\begin{array}{c} 3.08 \times 10^{-4} \pm 1 \times 10^{-6} \\ 2.96 \times 10^{-4} \pm 2 \times 10^{-6} \\ 5.82 \times 10^{-4} \pm 14 \times 10^{-6} \\ 5.80 \times 10^{-4} \pm 16 \times 10^{-6} \\ 2.82 \times 10^{-4} \pm 2 \times 10^{-6} \\ 7.806 \times 10^{-4} \pm 0.4 \times 10^{-6} \\ 2.34 \times 10^{-3} \pm 2 \times 10^{-5} \end{array}$

TABLE III

Characteristics of Gd Samples

^aData taken from Ref. 17.

III. DATA REDUCTION

The data-taking and data-reduction techniques that were used for this experiment are described in Ref. 23. For each sample, 16 TOF spectra with 328125 channels were measured; each of the 16 spectra represented a different observed gamma multiplicity. A minimum of 100-keV gamma energy was required in a detector segment to be counted. Data were recorded as capture events only if the total energy deposited in all 16 segments exceeded 1 MeV. The data were recorded as scattering events if the total deposited gamma-ray energy fell between 360 to 600 keV. This scattering energy region contains the 478-keV gamma ray emitted from the ($n;\alpha,\gamma$) reaction in the ¹⁰B₄C annular detector liner.

The large amount of TOF data collected in each capture measurement was subjected to statistical integrity checks to verify the stability of the electron LINAC, the capture detector, and associated beam monitors. The data were recorded in 398 files each containing data taken on all samples for a total time of ~ 54 h. Any data that failed the integrity test were eliminated. Next, the data were dead-time corrected, normalized to beam monitors, and summed. The background was determined using normalized data measured with an empty aluminum sample holder mounted on the sample changer. This background was subtracted from the normalized and summed capture spectra. The 16 individual capture spectra were then summed into a single total spectrum.

Processed TOF data are expressed as capture yield. The capture yield is defined as the number of neutron captures per neutron incident on the sample. Therefore, in addition to the Gd sample data, another set of data was needed to determine the energy profile of the neutron flux. The capture yield Y_i in TOF channel *i* was calculated by

$$Y_i = \frac{C_i - B_i}{K \phi_{smi}} , \qquad (1)$$

 C_i = dead-time-corrected and monitor-normalized counting rate of the sample measurement

where

- B_i = dead-time-corrected and monitor-normalized background counting rate
- K = product of the flux normalization factor and efficiency
- ϕ_{smi} = smoothed, background-subtracted, and monitornormalized neutron flux.

The incident neutron flux shape was determined by mounting a 2.54-mm-thick, 97.9 wt%–enriched ¹⁰B₄C sample in the sample changer and adjusting the total energy threshold to record the 478-keV gamma rays from neutron absorption in ¹⁰B. A ¹⁰B₄C sample was used since it has high absorption and smooth cross section. The measured ¹⁰B₄C data and a correction for the neutron scattering and absorption in the ¹⁰B₄C were used to determine the neutron flux shape. These flux data gave the shape of the neutron beam flux but not its magnitude. The flux was smoothed by averaging adjacent points. The yield was normalized to the transmission parameters obtained from RPI data¹⁷ using the SAMMY fit.

Background was not fitted during the SAMMY analysis. Background was measured using an empty sample holder and was subtracted from all samples. The measured flux shape is usually normalized directly to a saturated capture resonance. However, this was not possible in this experiment because there were no saturated resonances in any of the Gd isotopes; instead, the capture data were normalized using SAMMY to the previous RPI transmission data¹⁷ at resonance energies listed in Table IV.

This capture yield and its associated statistical uncertainty were used as input parameters for the SAMMY code⁴ that extracted the neutron resonance parameters. Capture data were not used below 10 eV due to excessive background.

IV. DATA ANALYSIS

Resonance parameters, neutron width Γ_n , radiation width Γ_{γ} , and resonance energy E₀, were extracted from the Gd capture data sets using the SAMMY multilevel

TABLE IV Resonance Energy for Each Sample for Flux Normalization and Normalization Factor Obtained by SAMMY

Sample	Resonance Energy (eV)	Normalization Uncertainty
¹⁵⁵ Gd ¹⁵⁶ Gd ¹⁵⁷ Gd ¹⁵⁸ Gd ¹⁶⁰ Gd ^{nat} Gd	$\begin{array}{r} 30.047\\ 33.149\\ 16.781\\ 22.295\\ 222.003\\ 16.781\end{array}$	3.2% 7.8% 1.4% 4.8% 5.7% 2.5%

R-matrix Bayesian code.⁴ The SAMMY code enabled a combined transmission and capture analysis, which employed experimental resolution, Doppler broadening, multiple scattering, and self-shielding. The resolution broadening describes the cumulative effect of the electron burst width in the RPI LINAC, the moderator slowing-down time, the TOF channel width, and the effect of the detector. For capture measurements, the thin capture samples contributed very little to resolution broadening, and thus, this component of broadening was ignored.

A key factor in fitting the correct shape to the experimental data was knowledge of the resolution function, which had a significant impact on the shapefitting process, especially at epithermal energies. Inaccuracy in the shape of the resolution function can translate into imprecise resonance parameters when fitting experimental data. For this reason, the epithermal capture resolution functions were fit to well-known ²³⁸U resonances using SAMMY. Special attention was given to epithermal energy regions since the resolution function had greater influence in this energy region than in the thermal energy region. The electron burst width and the TOF channel widths were entered as SAMMY input parameters. All remaining resolution function components were described by a Gaussian plus an exponential tail with the energy folding width of $0.06 \ \mu s$ (Ref. 25). This function of magnitude versus time has an integral over time of unity.

As a starting point, the SAMMY code fitted Gd parameters using initial parameters from the previous RPI

experiment¹⁷ in the energy region of 10 to 300 eV and from the ENDF/B-VII.0 evaluation²⁶ in the energy region above 300 eV. In this experiment, we had five enriched Gd samples and one natural Gd sample. A reduced χ^2 value was obtained for each Gd sample. The resonance parameters for each Gd sample (isotope) were used as input parameters for the combined fit. Table V shows the reduced χ^2 value for each step.

As the second step, a combined fit was performed on ^{*nat*}Gd, ¹⁵⁵Gd, ¹⁵⁶Gd, ¹⁵⁷Gd, ¹⁵⁸Gd, and ¹⁶⁰Gd metallic sample data. This was done by fitting each data set sequentially and using the SAMMY parameter file along with the SAMMY covariance matrix file created by the previous fit as input to the next. Resonance parameters of ¹⁵²Gd and ¹⁵⁴Gd were fixed to ENDF/B-VII.0 values²⁶ and not varied for the isotopic samples because of their low abundances (0.2% and 2.18% for natural Gd), but in the case of ¹⁵⁴Gd, we only varied parameters of E_0 , Γ_n , and Γ_{γ} for the natural sample. When no further improvements in the fit were apparent, and the resonance parameters remained unchanged relative to the previous iteration, the parameters were deemed final. The SAMMY code was then used to calculate capture yield curves based on these final resonance parameters to compare with the experimental data from each Gd sample. The reduced χ^2 obtained from the second step of the SAMMY fitting is shown in Table V. We also examined each resonance listed in ENDF/B-VII.0 to check whether it was observed in the present data. If it did not look like a resonance peak, we removed the resonance from the parameter file. We fitted several times for each step in order to get the minimum χ^2 values from the SAMMY fitting. The final reduced χ^2 values from the SAMMY code are listed in Table V.

The resonance integral RI was calculated for each Gd isotope using the NJOY code²⁷ and INTER code.²⁸ The NJOY code was used to reconstruct room temperature pointwise cross sections given either the ENDF/B-VII.0 or the final Gd resonance parameters, while the INTER code was used to perform the integration to calculate the resonance integral. The resonance integral RI is defined as follows:

$$RI = \int_{0.5 \text{eV}}^{20 \text{MeV}} \sigma_{\gamma}(E) \frac{dE}{E} , \qquad (2)$$

		λ				
	¹⁵⁵ Gd	¹⁵⁶ Gd	¹⁵⁷ Gd	¹⁵⁸ Gd	¹⁶⁰ Gd	natGd
First step Second step Final step	3.18 2.49 2.40	2.88 2.61 2.57	3.43 2.19 1.97	2.88 2.67 2.65	3.78 3.72 3.71	2.36 1.74 1.64

TABLE V

Reduced χ^2 Value for Each Step of the SAMMY Fitting*

*The reduced χ^2 value means the minimum value obtained by several fittings in each step.

where

- RI = infinitely dilute capture resonance integral (b)
- $\sigma_{\gamma}(E)$ = neutron capture cross section generated by NJOY with Gd resonance parameters (b)

E = neutron energy (eV).

The resonance integrals were calculated from 0.5 eV to 20 MeV. The calculation was performed with the present resonance parameters replacing the ENDF/B-VII.0 parameters²⁶ for all resonances between 21 eV and 1 keV and using the previous RPI resonance parameters¹⁷ for all resonances from 0.2 to 21 eV.

V. RESULTS

V.A. Resonance Parameters

The neutron width Γ_n , radiation width Γ_{γ} , and resonance energy E_0 were extracted from the capture yields of five enriched Gd isotopes using the SAMMY version 8.0 multilevel R-matrix Bayesian code.⁴ The combined fit employed the experimental resolution and Doppler broadening, self-shielding, and multiple-scattering features of SAMMY. Figure 1 shows data from the natural Gd sample and five enriched isotopic samples as well as the corresponding curves for these data obtained using the SAMMY program. The resulting resonance parameters and the uncertainties of each Gd isotope are presented in Table VI along with evaluated parameters from ENDF/B-VII.0 (Ref. 26) and the previous RPI measurement.¹⁷ The resonance parameters of ENDF/B-VII.1 (Ref. 29) are the same as those of ENDF/B-VII.0 except for 0.032-eV resonance. In Table VI we interpreted the neutron widths of the resonances previously identified by RPI using the present measured isotope and J value; J is the total angular momentum of the compound state (also known as the spin state of the resonance) in units of $h/2\pi$, where h is Planck's constant.

The unassigned neutron widths in the previous RPI measurement¹⁷ were treated as $2ag\Gamma_n$ for odd-A isotopes and $ag\Gamma_n$ for even-A isotopes, where *a* is abundance and *g* is the statistical weighting factor: g = (2J + 1)/[2(2I + 1)], where *I* is the spin of the target nucleus and *J* is the total angular momentum of the compound state.

For very low-energy resonances, where the resolution width is minimal, the radiation width Γ_{γ} can be derived directly from the measured data. At higher energy, radiation widths can be determined whenever a resonance includes a significant quantity of scattering. A criterion of $\Gamma_{\gamma}/\Gamma_n < 5$ was chosen in Ref. 25 to reflect sensitivity of a resonance to the value of the radiation width. Whenever $\Gamma_{\gamma}/\Gamma_n < 5$, radiation widths were extracted from the data. But, for resonances whose Γ_{γ}/Γ_n ratio was >5, the experiment effectively measured only the quantity Γ_n . For these mostly capture resonances, neither transmission nor capture data contain sufficient radiation width information.

Fig. 1. Capture yield data and calculated fitting curves using resonance parameters obtained with the SAMMY program in the neutron energy region (a) from 10 to 300 eV and (b) from 300 to 1000 eV.

These resonances were assigned the radiation width from ENDF/B-VII.0. New resonances seen in the data but not present in ENDF/B-VII.0 were assigned an average radiation width that was determined by the following method. Resonances sensitive to the value of the radiation width were identified for each isotope; orbital angular momentum; and, where data were available, spin (total angular momentum). Resonances were chosen to use in the determination of the average radiation width $<\Gamma_{\gamma}>$ if they met the following two criteria:

1. The ENDF/B-VII.0 capture-to-scattering ratio Γ_{γ}/Γ_n was <5.

2. The resonance was not a minor member of a multiplet, i.e., a shoulder on a larger resonance.

nat Gd

155 Gd

Present Data SAMMY fit

5
щ
BI
₹

ENDF 0.50.5 0.5 0.5 0.5 J Value Resonance Parameters for ¹⁵²Gd, ¹⁵⁴Gd, ¹⁵⁵Gd, ¹⁵⁸Gd, ¹⁵⁸Gd, ^{and 160}Gd Isotopes Compared with ENDF/B-VII.0 and Previous RPI Data RPI 0.5 $\begin{array}{c} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{array}$ Present 00Isotope 4 ENDF Γ_n (meV) 4.516 4.65 84 39 306 60 5.11 142 78.8 2.83 86 84 97 97 97 97 145 127 145 RPI Present Gadolinium-152 (Continued) ENDF 64.2 62 52.4 49.1 71 RPI Γ_{γ} (meV) $\Gamma_{\gamma}^{}$ Source Present $\begin{array}{c} -6.2\\ 12.35\\ 39.3\\ 39.3\\ 39.3\\ 39.3\\ 74.34\\ 85.55\\ 92.4\\ 1100\\ 1100\\ 1173.8\\ 1173.8\\ 1173.8\\ 1173.8\\ 1173.8\\ 1173.8\\ 3333.1\\ 33$ ENDF Energy (eV) -1 12.35 36.86 39.3 42.73 42.73 85.55 92.4 140 1160 1173.8 173.8 203.1 223.3 231.4 231.4 238 252.4 293.4 293.4 RPI Present $\begin{array}{c} -6.2\\ 12.35\\ 36.86\\ 39.3\\ 39.3\\ 39.3\\ 39.3\\ 74.34\\ 74.34\\ 85.55\\ 92.4\\ 1140\\ 1173.8\\ 185.7\\ 1173.8\\ 333.1\\ 333.1\\ 333.1\\ 333.1\\ 333.7\\ 505.8\\ 333.7\\ 505.8\\ 505.8\\ 505.8\\ 505.8\\ 511.7\\ 5505.8\\ 537.4\\ 5505.8\\ 537.4\\ 5505.8\\ 537.4\\ 5505.8\\ 537.4\\ 5505.8\\ 537.4\\ 5505.8\\ 537.4\\ 5505.8\\ 537.4\\ 5505.8$

KANG et al.

-			r –																															-
	ENDF		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
J Value	RPI																																	
	Present		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Isotope	A		152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	
	ENDF		3.7	299	9	866	83	276	4.6	36	291	750	14	86	13	55	5.9	3.6	242	136	30	37	441	44	69	164	164	53	123	7.1	29	145	288	
Γ_n (meV)	RPI																																	
	Present	2	3.7	299	20	866	83	276	4.6	36	291	750	14	86	13	55	5.9	3.6	242	136	30	37	441	44	69	164	164	53	123	7.1	29	145	288	
	ENDF	lolinium-15	55	56	55	67	55	57	55	55	50	55	55	55	55	55	55	55	59	54	55	55	68	55	55	79	79	55	55	55	55	55	56	Continued)
(V)	RPI	Gad																															_	E
Γ_{γ} (me	$\Gamma_{\gamma}^{}$ Source		ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF															
	Present		55	56	55	67	55	57	55	55	50	55	55	55	55	55	55	55	59	54	55	55	68	55	55	62	62	55	55	55	55	55	56	
	ENDF		545.8	553.2	558.5	575.4	608.3	619.4	626.7	631.2	660.3	683.8	720.7	737.8	751.6	776.2	779.6	798	805.5	814.3	819.6	830	838.2	883	892.3	910.2	910.6	928.8	948.9	956	968.5	972.8	994.1	
Energy (eV)	RPI																																	
	Present		545.8	553.2	558.5	575.4	608.3	619.4	626.7	631.2	660.3	683.8	720.7	737.8	751.6	776.2	779.6	798	805.5	814.3	819.6	830	838.2	883	892.3	910.2	910.6	928.8	948.9	956	968.5	972.8	994.1	

	ENDF		40		C.U	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2.0 2 0	0.0 V	2 C	0.0 V	U.U	New	0.0 V	0.0 Y	U.U	New	0.0 Y	0.0 2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
J Value	RPI		20		C.U	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0 20	0.0 2 0	U.U I Imacocional	Uliassigneu 0 5	C.U 7 0	0.0 2	U.U ITanand	Unassigned	0.0 8	0.5 0															
	Present		40		C.U	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	50	0.0	20.0	2.0	2.0	C.U Z	C.U Z Q	0.U		C.U 2 0	C.U 2 0	0.0 20	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Iso- tope	A		151	1	154	154	154	154	154	154	154	154	154	154	154	151	151	151	401 174	401 124	151	151	151 151	151	154	154	154	154	154	154	154	154	154	154	154	154	154	154	154	
	ENDF		ç	1	0.4	12	3.2	1.8	24	1.1	32	4.8	124	124	38	105	۲01 ۲	U VIour	new 12	14	رر 10	No.	new 12	71	+ 80	14	14	8	94	44	120	93	123	60	5.3	91	44	47	12	
n (meV)	RPI		22 0		0.2 ± 0.2	20 ± 10	2.4 ± 0.6	3 ± 1	32 ± 5	2.0 ± 0.9	48 ± 7	11 + 2	150 + 20	40 + 10	46 + 10	158 + 3	40+0.1	4.9⊥0.4 11⊥5	14 ⊟ J 80 + 50	15 ± 1	4.0 ± 1	110 - 00 64 - 0	04 ⊟ 9 26 + 1	40 + 1	50 + 10															
	Present		, ,		0.2 ± 0.2	17 ± 1	3.9 ± 0.4	1.9 ± 0.2	30 ± 2	1.1 ± 0.1	41 + 3	6+1	103 + 9	141 + 12	20+3 20+3	117 + 11	11/-11 5 1+05	0.1 + 0.0 - 1 + 0.0	21 ± 2 12 ± 1	1 ∐ ⊂ 1 2 2 + 2	c + of c + of	10 - 1	41 ∺ 4 1 → 4 1 - 4	1 1	20 + + + + + +	14 ± 1	13.2 ± 1.3	8.7 ± 0.9	101 ± 10	45 ± 4	124 ± 12	102 ± 10	115 ± 12	60.3 ± 6.0	5.3 ± 0.5	98 ± 10	50 ± 5	52.7 ± 5.3	12 ± 1	
	ENDF	inium-154	Ţ	+ -	4/	74	88	88	57	88	82	88	85	01 01	88	00 LL	99	oo Mour	New 00	00	00	NT	New 88	00	88	88	88	88	65	88	76	69	86	75	73.9	83	80	99	73.9	ntinued)
neV)	RPI	Gadoli	00	00-00	90 ± 80	100 ± 100	89 ± 8	90 ± 40	100 ± 20	90 + 50	90 ± 40	110 + 20	110 + 50	04 + 8	120 + 20	08 + 7	90 - 1 85 + 0	00 T 00 T 00	100 ± 80	00 ± 40	99 ± 0	100 ± 60	101 ± 0	101 ± 7 01 ± 7	120 + 20															(Coi
Γ_{γ} (n	Γ_{γ} Source			TUNE	KPI	ENDF	ENDF	ENDF	FIT	ENDF	FIT	ENDF	FIT	FIT	ETT FIT	EIT	FNDF		A V C	ENUF	L I I		AVU	ETT	FIT	ENDF	ENDF	ENDF	FIT	FIT	FIT	FIT	FIT	FIT	ENDF	FIT	FIT	FIT	ENDF	
	Present		, r	/+ 	90 ± 80	74	88	88	65 ± 6	88	83 ± 8	88	69 + 6	05 + 8	8 + 68 8 + 8	8 + 00	0 - 0€ 88	00 75	C/ 00	00 04 ± 0	67 - 70 86 - 10	75	C/ 00	00 + 0	6 + 16	88	88	88	71 ± 7	88 ± 9	80 ± 8	76 ± 7	78 ± 8	76 ± 8	73.9	89 ± 9	85 ± 8	71 ± 7	73.9	
	ENDF		, ,	7.7	80.11	22.33	47.07	49.5	65.06	76.12	100.7	105.6	124	130.7	148 4	164.5	104.0	1/0.4 Nou:	new 201.6	201.0 211	117	VI2	757 Q	0.7C7 257 5	C 692	331.7	333.8	364.8	396.5	407.6	444.7	447.1	468	486.77	491.89	511.9	516.7	552.26	565.5	
Inergy (eV)	RPI		¢		$c_{0.0} \pm 1.51$	22.5 ± 0.2	47.18 ± 0.04	49.63 ± 0.07	65.21 ± 0.01	76.00 ± 0.03	100.72 ± 0.08	106.05 ± 0.08	124.25 ± 0.08	1380+0.2	120.7 ± 0.2 148.7 ± 0.2	1 + 0.2 = 0.2	104.0 ± 0.2 170.4 ± 0.1	$1 0.4 \pm 0.1$	100.5 ± 0.7	1157 ± 0.07	20.0 ± 70.012	7250 ± 0.0	253.9 ± 0.2	0.0 ± 0.02	26957 ± 0.03														_	
	Present		ĊĊ		$c_{0.0} \pm / c_{.11}$	22.50 ± 0.01	47.14 ± 0.05	49.71 ± 0.08	65.20 ± 0.02	75.99 ± 0.15	100.66 ± 0.03	105.88 ± 0.12	124.18 ± 0.03	130.06 ± 0.03	1485+01	16480 ± 0.05	1705 ± 0.00	10000 ± 01	189.09 ± 0.11	201.4 ± 0.2	211.45 ± 0.10	$725 00 \pm 0.10$	253.89 ± 0.10	75768 ± 0.10	26940 + 0.07	331.7 ± 0.3	333.5 ± 0.3	365.3 ± 0.3	396.9 ± 0.1	407.3 ± 0.1	445.2 ± 0.2	447.0 ± 0.2	467.7 ± 0.2	486.38 ± 0.08	491.72 ± 0.46	512.2 ± 0.2	516.8 ± 0.2	552.28 ± 0.29	565.6 ± 0.4	

KANG et al.

Energ	y (eV)			Γ_{γ} (meV	(/		Γ,	¹ (meV)		Isotope		J Valu	0
Present	RPI	ENDF	Present	Γ_{γ} Source	RPI	ENDF	Present	RPI	ENDF	A	Pres- ent	RPI	ENDF
						Gadoli	nium-154						
590.68 ± 0.27		590.51	66 ± 6	FIT		62	159 ± 16		155	154	0.5		0.5
593.12 ± 0.45		593.29	73.9 ± 7.4	FIT		73.9	16 ± 2	_	16	154	0.5		0.5
605.18 ± 0.49		605.28	73.9	ENDF		73.9	3.1 ± 0.3	_	3.1	154	0.5		0.5
625.29 ± 0.34		626.07	60 ± 6	FIT		62	234 ± 23	_	237	154	0.5		0.5
641.27 ± 0.23		640.81	73.6 ± 7.4	FIT		73.9	43 ± 4	_	43	154	0.5		0.5
652.4 ± 0.5		652.4	73.9	ENDF		73.9	9.9 ± 1.0	_	9.6	154	0.5		0.5
684.18 ± 0.38		685.27	75±7	FIT		74	27.4 ± 2.8	_	26.7	154	0.5		0.5
687.44 ± 0.42		687.95	74 土 7	FIT		74	40 ± 4	_	40	154	0.5		0.5
696.45 ± 0.53		696.78	73.9	ENDF		73.9	11.6 ± 1.2	_	11.6	154	0.5		0.5
721.85 ± 0.54		721.81	73.9	ENDF		73.9	14.1 ± 1.4	_	14.4	154	0.5		0.5
749.36 ± 0.52		749.22	74.1 ± 7.4	FIT		73.9	29.0 ± 2.9	_	28.8	154	0.5		0.5
774.36 ± 0.11		774.89	58 ± 6	FIT		58	103 ± 10	_	103	154	0.5		0.5
796.02 ± 0.18		795.91	74.1 ± 7.4	FIT		73.9	39 ± 4	_	39	154	0.5		0.5
810.54 ± 0.50		809.78	64 ± 6	FIT		65	198 ± 20	_	199	154	0.5		0.5
812.37 ± 0.55		812.46	74.4 ± 7.4	FIT		73.9	55 ± 5	_	54	154	0.5		0.5
837.16 ± 0.50		837.35	84 ± 8	FIT		74	557 ± 56	_	541	154	0.5		0.5
847.7 ± 0.6		846.3	75±7	FIT		73	288 ± 29	_	286	154	0.5		0.5
859.65 ± 0.36		859.97	78±7	FIT		72	328 ± 33	_	321	154	0.5		0.5
880.17 ± 0.63		880.22	74.2 ± 7.4	FIT		73.9	24 ± 2	_	24	154	0.5		0.5
897.59 ± 0.62		898.12	66 ± 7	FIT		66	323 ± 32	_	323	154	0.5		0.5
911.15 ± 0.59		911.48	73±7	FIT		72	73 ± 7	_	72	154	0.5		0.5
917.9 ± 0.7		917.8	74 ± 7	FIT		75	418 ± 42	_	417	154	0.5		0.5
930.55 ± 0.49		929.22	74 土 7	FIT		73	21 ± 2	_	21	154	0.5		0.5
966.90 ± 0.20		967.77	70 ± 7	FIT		68	275 ± 27	_	272	154	0.5		0.5
973.96 ± 0.68		973.94	73.8 ± 7.4	FIT		73.9	38 ± 4	_	38	154	0.5		0.5
985.6 ± 0.6		986.2	73 土 7	FIT	_	74	156 ± 16	-	157	154	0.5	_	0.5
						(Con	ntinued)						

NUCLEAR SCIENCE AND ENGINEERING VOL. 180 MAY 2015

	ENDF		0 -	- 0	1	20	2 6	ı —	10	1	7	0	0	New	0	1	0	0	0	1	1	1	0	-	0	-	0	0	1	1	1	0	0	0	
Value	RPI		2	- 7	1	2 0	2 0	1	0	1	2	0	2	New	0	1	0	2	7	1	1	1	5	1	6	1	7	7	1	1	1	2	7	2	
	Present		- 12	- 0	1	00	20	ı —	0	1	2	0	2	1	7	1	7	2	2	1	1	1	7	-	6	-	7	0	1	1	1	0	7	0	
Iso- tope	A		155	155	155	155	cc1 251	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	
	ENDF		0.104	1.744	0.04	5	0.17	0.6	0.88	3.2	0.39	4.6	15.6	New	3.12	1.12	4.32	10.4	1.12	1.87	1.6	6.13	1.84	8.4	1.04	17.3	2.24	5.36	0.653	18.7	19.5	1.36	7.68	2.16	
Γ_n (meV)	RPI		0.097 ± 0.003	1.706 ± 0.003	0.05 ± 0.02	2.20 ± 0.01	1.16 ± 0.01 0 20 + 0 04	0.78 ± 0.08	1.12 ± 0.04	3.43 ± 0.09	0.47 ± 0.04	4.5 ± 0.1	11.6 ± 0.5	New	2.91 ± 0.08	1.31 ± 0.04	4.8 ± 0.1	11.1 ± 0.5	1.24 ± 0.07	1.6 ± 0.6	1 ± 4	6.8 ± 0.2	2.17 ± 0.06	8.3 ± 0.3	1.25 ± 0.07	18 ± 9	2.3 ± 0.1	10.2 ± 0.4	0.39 ± 0.03	20.3 ± 0.6	20.9 ± 0.8	1.2 ± 0.2	8.7 ± 0.2	2.5 ± 0.1	
	Present		0.097 ± 0.003	1.706 ± 0.003	0.05 ± 0.02	2.20 ± 0.01	1.16 ± 0.01 0.20 ± 0.04	0.78 ± 0.08	1.12 ± 0.04	3.43 ± 0.09	0.47 ± 0.04	4.5 ± 0.1	11.6 ± 0.5	0.54 ± 0.04	2.86 ± 0.06	1.27 ± 0.06	4.8 ± 0.1	11.0 ± 0.2	1.10 ± 0.05	1.6 ± 0.1	1.9 ± 0.1	6.3 ± 0.2	2.01 ± 0.06	8.0 ± 0.2	1.20 ± 0.06	16.5 ± 0.3	2.2 ± 0.1	5.4 ± 0.1	0.63 ± 0.05	18.7 ± 0.4	20.4 ± 0.4	1.1 ± 0.1	8.0 ± 0.2	2.1 ± 0.2	
	ENDF	155	108	111	130	114	1154	125	112	103	120	104	98	New	120	125	108	100	118	110	115	152	118	101	118	136	126	100	110	110	115	110	92	120	(þ
(V.	RPI	Gadolinium-	104 ± 3 128 + 1	120 ± 1 107.1 ± 0.4	130	108.8 ± 0.6	109 ± 1 110+20	120 ± 40	130 ± 20	130 ± 10	130 ± 40	118 ± 6	140 ± 20	New	140 ± 10	140 ± 20	113 ± 2	130 ± 10	140 ± 20	110 ± 30	120 ± 90	131 ± 4	140 ± 10	139 ± 6	130 ± 60	140 ± 90	128 ± 6	140 ± 30	107 ± 10	130 ± 30	140 ± 20	80 ± 30	140 ± 30	120 ± 40	(Continue
Γ_{γ} (me	Γ_{γ} Source		RPI PDI	RPI	RPI	RPI	RPI RPI	RPI	RPI	RPI	RPI	RPI	RPI	AVG	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	
	Present		104 ± 3	120 ± 1 107.1 ± 0.4	130	108.8 ± 0.6	109 ± 1 110 + 20	120 ± 40	130 ± 20	130 ± 10	130 ± 40	118 ± 6	140 ± 20	127	120	125	108	100	118	110	115	152	118	101	118	136	126	100	110	110	115	110	92	120	
	ENDF		0.0268	2.568	3.616	6.3 7 75	c/./	11.53	11.99	14.51	17.77	19.92	21.03	New	23.67	27.57	29.58	30.1	31.72	33.14	33.51	34.83	35.47	37.12	39	43.92	46.1	46.87	47.73	51.38	52.13	53.03	53.74	56.22	
inergy (eV)	RPI		0.025 ± 0.003	2.5729 ± 0.0003	3.616 ± 0.003	6.3057 ± 0.0002	1.7471 ± 0.0004 9.991 ± 0.003	11.508 ± 0.001	11.964 ± 0.008	14.476 ± 0.009	17.729 ± 0.005	19.86 ± 0.01	20.97 ± 0.02	New	23.60 ± 0.02	27.509 ± 0.002	29.50 ± 0.02	30.05 ± 0.02	31.66 ± 0.01	33.1 ± 0.2	33.4 ± 0.3	34.73 ± 0.02	35.39 ± 0.01	37.066 ± 0.003	38.93 ± 0.01	43.83 ± 0.07	45.98 ± 0.02	46.79 ± 0.02	47.628 ± 0.006	51.25 ± 0.03	52.01 ± 0.03	52.89 ± 0.02	53.62 ± 0.02	56.12 ± 0.01	
Е	Present		0.025 ± 0.003	2.5729 ± 0.0003	3.616 ± 0.003	6.3057 ± 0.0002	7.747 ± 0.0004 9.991 ± 0.003	11.508 ± 0.001	11.964 ± 0.008	14.476 ± 0.009	17.729 ± 0.005	19.86 ± 0.01	20.97 ± 0.02	22.32 ± 0.01	23.592 ± 0.003	27.482 ± 0.007	29.519 ± 0.003	30.047 ± 0.002	31.629 ± 0.008	33.01 ± 0.01	33.42 ± 0.01	34.730 ± 0.004	35.37 ± 0.01	37.039 ± 0.004	38.93 ± 0.01	43.838 ± 0.003	45.96 ± 0.01	46.770 ± 0.004	47.522 ± 0.032	51.252 ± 0.004	52.008 ± 0.003	52.87 ± 0.02	53.600 ± 0.004	56.05 ± 0.01	

NUCLEAR SCIENCE AND ENGINEERING VOL. 180 MAY 2015

96

	DF							3																										M					
e	ENI	ļ	¢	10	7 0	2	-	Ne	0	0	1	2	2	-	-	-	2		0	0	2	1	1	1	0	-	1	-	0	-	2	0	1	Ne	2	-	0	-	
J Valu	RPI		¢	10	7 0	7	-	New	0	0	1	0	0	1	-	-	0	0	0	0	0	1	1	1	0	1	1	1	0	1	0	0	1	New	0		7	-	
	Present		¢	10	7	7	1	0	7	0	1	0	6	-	1		0	10	2	7	7	1	1	1	0	1	1	1	7	1	0	0	1	1	7	1	7	1	
Iso- tope	A		155			ccI	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	
	ENDF		6 61	5.0	x v v v v v	0.256	1.33	New	6.32	1.6	1.2	4.2	0.312	2.4	9.2	3.1	1.28	2.16	3.12	0.544	3.84	6.26	17.3	2.13	2.72	1.73	6	6.13	6.24	4.7	6	15.2	17.33	New	2	36	6.64	20.5	
Γ_n (meV)	RPI		10+03		$C.0 \pm C.8$	0.49 ± 0.03	0.5 ± 0.4	New	12 ± 4	3.0 ± 0.3	0.9 ± 0.1	8 ± 1	0 ± 3	1.44 ± 0.09	10.3 ± 0.1	2.2 ± 0.3	2.5 ± 0.2	2.14 ± 0.06	3.48 ± 0.07	0.64 ± 0.09	7.1 ± 0.4	3.8 ± 0.7	11.7 ± 0.4	2.5 ± 0.2	2.1 ± 0.2	1.52 ± 0.06	5 ± 1	6 ± 1	9 ± 2	7.3 ± 0.5	9.1 ± 0.2	20 ± 1	21 ± 1	New	2.5 ± 0.4	40 ± 6	4 ± 1	14.6 ± 0.4	
	Present		20+23		8.0 ± C.1	0.44 ± 0.04	0.5 ± 0.1	0.56 ± 0.05	6 ± 1	1.9 ± 0.2	1.0 ± 0.1	4.4 ± 0.4	0.9 ± 0.1	1.1 ± 0.1	10.6 ± 1.1	3.7 + 0.4	1.4 + 0.1	2.11 ± 0.15	2.78 ± 0.28	0.58 ± 0.06	3.8 ± 0.4	7.3 ± 0.7	20.0 ± 2.0	2.8 ± 0.2	2.2 ± 0.2	2.22 ± 0.22	10 ± 1	7 ± 1	7 ± 1	4.0 ± 0.4	9.0 ± 0.9	17 ± 2	24 ± 2	1.2 ± 0.1	1.6 ± 0.2	44 ± 4	5 ± 1	27.0 ± 2.7	
	ENDF	-155	1 20	147	90 711	110	109.8	New	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	84	67	116	New	110	159	110	110	(pe
eV)	RPI	Gadolinium	140+40		110 ± 30	110 ± 40	120 ± 10	New	100 ± 100	110 ± 60	110 ± 20	110 ± 30	112 ± 4	110 ± 30	120 ± 40	110 + 40	110 + 90	110 ± 20	110 ± 50	110 ± 40	110 ± 50	110 ± 50	150 ± 20	110 ± 10	140 ± 30	110 ± 50	110 ± 80	140 ± 20	110 ± 80	115 ± 2	90 ± 70	130 ± 20	120 ± 80	New	110 ± 50	200 ± 100	120 ± 20	110 ± 60	(Continue
Γ _γ (m	Γ_{γ} Source		ENDE		ENDF	ENDF	ENDF	AVG	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	ENDF	FIT	ENDF	FIT	ENDF	AVG	ENDF	FIT	ENDF	ENDF							
	Present		120	147	5	110	110	133	110	110	110	110	110	110	110	110	110	110	110	110	110	110	110	105 ± 10	110	110	110	110	110	110	84	132 ± 13	116	127	110	184 ± 18	110	110	
	ENDF		50.27		07.84	64.09	65.2	New	69.4	LL	77.8	78.8	80.1	80.9	84.2	85	90.5	92.5	92.8	94.1	95.7	96.6	98.3	100.2	101.4	102.1	104.4	105.9	107.1	109.6	112.4	113.8	116.5	New	118.6	123.4	124.4	126	
inergy (eV)	RPI		50 30 + 0 01	10.0 ± 0.00	02. /3 ± 0.02	64.028 ± 0.006	66.4 ± 0.5	New	69.4 ± 0.1	76.85 ± 0.01	77.63 ± 0.01	78.75 ± 0.06	80 ± 1	80.9 ± 0.3	83.97 ± 0.02	84.91 ± 0.01	90.51 ± 0.02	92.47 ± 0.02	92.90 ± 0.03	93.99 ± 0.01	95.70 ± 0.03	96.4 ± 0.2	98.30 ± 0.03	99.9 ± 0.1	101.42 ± 0.02	102.03 ± 0.03	104.36 ± 0.09	105.8 ± 0.1	107.14 ± 0.04	109.37 ± 0.02	112.40 ± 0.04	113.81 ± 0.05	116.56 ± 0.06	New	118.66 ± 0.02	123.35 ± 0.05	124.49 ± 0.03	126.11 ± 0.02	
Ξ	Present		20 763 + 0 001		$62./10 \pm 0.004$	64.824 ± 0.042	66.6 ± 0.1	68.81 ± 0.03	69.42 ± 0.01	76.74 ± 0.02	77.53 ± 0.06	78.69 ± 0.01	80.63 ± 0.04	80.75 ± 0.05	83.91 ± 0.01	84.87 ± 0.02	90.30 ± 0.03	92.32 ± 0.03	92.81 ± 0.02	93.91 ± 0.06	95.68 ± 0.02	96.34 ± 0.01	98.22 ± 0.01	100.11 ± 0.03	101.27 ± 0.03	101.89 ± 0.04	104.30 ± 0.01	105.83 ± 0.02	107.03 ± 0.01	109.46 ± 0.02	112.30 ± 0.01	113.71 ± 0.01	116.46 ± 0.01	116.79 ± 0.06	118.58 ± 0.04	123.29 ± 0.01	124.38 ± 0.02	126.01 ± 0.01	

	ENDF		1 2 2	new 1 New	101	I New	- 0	10	5	0 -	- 6	1	00	2 7	5	1	0	c1 c	10	1	1	New	New	New	New	New	Now
J Value	RPI		00-	Unassigned 1	101	I New		10	7	- 1	- 7	1	00	7 67	0	1	0	C1 C	10	1	1	Unassigned	Unassigned	Unassigned			
	Present		- 7 7	•	101		0	7 7	0	- 1	- 6	1	00	7 6	0	1	0	0 0	10	1	1	1	5	<u> </u>			
Isotope	А		155 155 155	155 155	155	155 155	155	cc1 155	155	155 155	155	155	155	cc1 551	155	155	155	155	155	155	155	155	155	155	155	155 221	7 L L L
	ENDF		1.12 2.56 48.53	New 3.73	0.88	21.3 New	4.13	1.04 6.16	3.8	9.6 33.33	24.8	8	1.12	7.08 9.6	20	30.13	8.32	9.2 27.0	2.08	9.73	14.7	New	New	New	New	New	TYC W
Γ_n (meV)	RPI		$\begin{array}{c} 1.7 \pm 0.2 \\ 3.4 \pm 0.3 \\ 22 \pm 3 \end{array}$	11.4 ± 0.7 5.3 ± 0.4	5.4 ± 0.2 1.9 ± 0.1	90±30 New	4.9 ± 0.3	1.09 ± 0.08 6.5 ± 0.3	5.3 ± 0.2	8.6 ± 0.9 36 ± 2	30 ± 2 80 ± 30	6.2 ± 0.8	1.1 ± 0.2	30 ± 10 10.3 + 0.5	21.6 ± 0.8	31 ± 4	8 ± 1	18 ± 1	4.2 ± 0.6	13 ± 2	9.7 ± 0.3	11.7 ± 1.8	3.2 ± 0.5	32 ± 2			
	Present	55	$ \frac{1.0 \pm 0.1}{3.3 \pm 0.3} \\ 34 \pm 3 $	15.1 ± 1.0 4.6 ± 0.5	2.9 ± 0.5 0.9 ± 0.1	18 ± 2 2.7 \pm 0.2	5.1 ± 0.5	0.1 ± 0.10	4.0 ± 0.4	9.2 ± 0.9 32+3	25 ± 3	11.0 ± 1.1	1.3 ± 0.1	8 ± 1 9.7 + 1.0	18.9 ± 1.9	31 ± 3	10 ± 1	9 ± 1	2.3 ± 0.2	13 ± 1	17.0 ± 1.7	10.4 ± 0.6	2.3 ± 0.2	26.0 ± 1.2	20.2 ± 1.0	3.3 ± 0.3	10.7 - C.U
	ENDF	linium-1;	$110 \\ 110 \\ 110 \\ 110$	New 110	110	110 New	110	110	110	110 110	110	110	110	110	110	110	110	110	110	110	110	New	New	New	New	New	MONT
neV)	RPI	Gado	110 ± 30 110 ± 40 150 ± 30	130 ± 10 140 ± 20	110 ± 50 110 ± 60	120±80 New	130 ± 10	120 ± 10 150 ± 20	130 ± 10	110 ± 10 110 ± 40	110 ± 40	150 ± 40	160 ± 30	110 ± 80 110 + 50	150 ± 20	123 ± 6	80 ± 30	110 ± 60	110 ± 30 110 ± 40	130 ± 10	110 ± 40	110 ± 40	110 ± 60	100 ± 100			
Γ_{γ} (r	Γ_{γ} Source		ENDF ENDF FIT	AVG ENDF	ENDF	ENDF AVG	ENDF	ENDF	ENDF	ENDF	FIT	ENDF	ENDF	ENDF	ENDF	FIT	ENDF	ENDF	ENDF	ENDF	ENDF	AVG	AVG	AVG	AVG	AVG	2
	Present		$ \begin{array}{c} 110\\ 110\\ 124\pm12\\ 124\pm12 \end{array} $	127 110	110	110 127	110	110	110	110 150 + 15	147 ± 10	110	110	110	110	123 ± 12	110	110 + 11	114 ± 11	110	110	127	133	127	127	127	171
	ENDF		129 129.8 130.8	New 133	134.7	137.8 New	140.4	141.4 145.6	146.9	148.2 149.6	150.2	152.2	154 157 3	5.0C1 160.1	161.6	168.3	170.3	171.4	175.6	178	180.4	New	New	New	New	New	TIC W
nergy (eV)	RPI		$\begin{array}{c} 128.53 \pm 0.02 \\ 129.82 \pm 0.01 \\ 130.79 \pm 0.01 \end{array}$	131.37 ± 0.01 133.04 ± 0.01	135.13 ± 0.02	$13/.99 \pm 0.08$ New	140.55 ± 0.05	141.50 ± 0.01 145.66 ± 0.01	147.02 ± 0.01	148.4 ± 0.3 149.53 ± 0.03	150.37 ± 0.04	152.27 ± 0.01	153.80 ± 0.05	150.4 ± 0.1 160.03 ± 0.07	161.57 ± 0.08	168.20 ± 0.09	170.2 ± 0.1	171.6 ± 0.1	175.46 ± 0.05	177.99 ± 0.02	180.34 ± 0.04	183.20 ± 0.05	185.11 ± 0.04	187.36 ± 0.07			
Ē	Present		$\begin{array}{c} 128.33 \pm 0.08 \\ 129.71 \pm 0.03 \\ 130.64 \pm 0.01 \end{array}$	131.21 ± 0.02 132.90 ± 0.03	134.73 ± 0.08	137.72 ± 0.02 138.34 ± 0.03	140.36 ± 0.03	141.37 ± 0.04 145.52 ± 0.02	146.83 ± 0.03	148.06 ± 0.02 149.36 ± 0.02	150.01 ± 0.01	152.22 ± 0.02	153.60 ± 0.07	159.98 ± 0.01	161.49 ± 0.01	168.17 ± 0.01	170.23 ± 0.02	171.15 ± 0.02	175.28 ± 0.05	177.82 ± 0.02	180.21 ± 0.02	183.21 ± 0.02	185.18 ± 0.06	187.09 ± 0.03	191.24 ± 0.02	193.43 ± 0.08	177.01 - 0.00

	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New																				
J Value	RPI	-			Unassigned	Unassigned	Unassigned	Unassigned	Unassigned	I	Unassigned)			Unassigned	Unassigned)	Unassigned)		Unassigned)					Unassigned	Unassigned	Unassigned				Unassigned		Unassigned	I	Unassigned	Unassigned	
	Present		0 0	7	7	1	1	1	1	1	1	1	1	2	2	1	1	7	1	1	2	2	1	1	1	1	1	7	1	1	1	1	1	7	1	1	1	7	
Isotope	A		155	cc 1	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	
	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New																				
Γ_n (meV)	RPI				5.9 ± 1.1	25.0 ± 0.5	5.8 ± 0.2	9.2 ± 0.3	50 ± 5		19.0 ± 0.3				52 ± 3	33 ± 2		12 ± 1			31 ± 1						10.0 ± 0.3	5.2 ± 0.1	11.7 ± 0.3				11.7 ± 0.9		4.0 ± 0.3		19 ± 2	15 ± 2	
	Present	55	27.1 ± 1.0	2.0 ± 0.2	7.0 ± 0.5	23.8 ± 1.3	14.7 ± 0.9	10.4 ± 0.7	52 ± 2	9.0 ± 0.6	19.1 ± 1.0	5.3 ± 0.4	26.4 ± 1.3	37.0 ± 1.3	38.7 ± 1.5	23.8 ± 1.3	13.1 ± 0.9	8.7 ± 0.5	11.0 ± 0.8	22.4 ± 1.4	23.3 ± 1.1	5.0 ± 0.4	8.5 ± 0.7	3.9 ± 0.4	16.3 ± 1.0	3.2 ± 0.3	14 ± 1	5.3 ± 0.4	10.0 ± 0.8	12.0 ± 0.9	8.9 ± 0.7	4.3 ± 0.4	7.6 ± 0.6	28.6 ± 1.3	5.6 ± 0.5	53 ± 3	22 ± 2	10.4 ± 0.8	
	ENDF	linium-1	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	ontinued																			
neV)	RPI	Gado			120 ± 10	140 ± 20	100 ± 10	102 ± 10	130 ± 20		140 ± 10				100 ± 70	100 ± 100		100 ± 90			100 ± 100						102 ± 10	104 ± 10	110 ± 10				100 ± 60		98 ± 10		100 ± 30	150 ± 40	Ũ
Γ_γ (r	Γ_{γ} Source		AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG																				
	Present		133	133	133	127	127	127	127	127	127	127	127	133	133	127	127	133	127	127	133	133	127	127	127	127	127	133	127	127	127	127	127	133	127	127	127	133	
	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New																				
inergy (eV)	RPI				209.1 ± 0.2	210.32 ± 0.01	212.32 ± 0.02	213.68 ± 0.02	214.77 ± 0.01		218.57 ± 0.02				229.52 ± 0.02	230.86 ± 0.05		232.85 ± 0.01			237.3 ± 0.1						259.25 ± 0.02	262.56 ± 0.01	264.89 ± 0.01				272.36 ± 0.02		279.40 ± 0.03		284.2 ± 0.1	285.24 ± 0.05	
E	Present		201.76 ± 0.01	207.19 ± 0.09	209.32 ± 0.04	210.23 ± 0.02	211.93 ± 0.03	213.37 ± 0.05	214.51 ± 0.01	216.88 ± 0.05	218.34 ± 0.03	219.98 ± 0.07	224.78 ± 0.02	227.57 ± 0.01	229.32 ± 0.01	230.40 ± 0.03	231.68 ± 0.05	232.72 ± 0.04	235.31 ± 0.04	236.27 ± 0.03	237.16 ± 0.02	243.27 ± 0.05	248.68 ± 0.05	252.43 ± 0.08	254.65 ± 0.02	258.17 ± 0.05	259.14 ± 0.05	262.08 ± 0.03	264.44 ± 0.05	268.05 ± 0.05	269.18 ± 0.06	271.22 ± 0.07	272.38 ± 0.06	276.71 ± 0.02	279.15 ± 0.10	282.30 ± 0.02	284.19 ± 0.04	285.11 ± 0.05	

		ı —	-																																		
	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
J Value	RPI			Unassigned)	Unassigned	Unassigned)																													
	Present		1	1	2	1	2	1	1	1	1	1	1	1	2	2	1	1	7	0	0	0	1	1	6	1	1	1	1	1	1	1	0	1	1	1	
Isotope	А		155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	
	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
Γ_n (meV)	RPI			21 ± 3		20 ± 2	3 ± 1																														
	Present	55	19.8 ± 1.4	22 ± 1	4.0 ± 0.4	19.2 ± 1.3	3.0 ± 0.3	7.2 ± 0.6	12.1 ± 1.0	10.4 ± 0.8	63 ± 4	7.5 ± 0.7	4.5 ± 0.4	68 ± 4	8.4 ± 0.6	15.7 ± 1.0	14.4 ± 1.1	19 ± 1	16.8 ± 1.1	15.1 ± 1.0	31 ± 2	11.4 ± 0.9	32 ± 2	24 ± 2	52 ± 3	24 ± 2	13.8 ± 1.1	53 ± 3	33 ± 2	35 ± 3	40 ± 3	7.0 ± 0.7	37 ± 2	38 ± 3	27 ± 2	28 ± 2	
	ENDF	linium-1	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	ontinued)
neV)	RPI	Gado		140 ± 30		130 ± 30	100 ± 10																													_	Ŭ
Γ_{γ} (n	Γ_{γ} Source		AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	
	Present		127	127	133	127	133	127	127	127	127	127	127	127	133	133	127	127	133	133	133	133	127	127	133	127	127	127	127	127	127	127	133	127	127	127	
	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
nergy (eV)	RPI			288.99 ± 0.03		292.37 ± 0.07	295.79 ± 0.08																														
E	Present		287.84 ± 0.03	288.85 ± 0.04	291.39 ± 0.12	292.24 ± 0.04	294.45 ± 0.07	300.5 ± 0.2	301.6 ± 0.1	307.4 ± 0.1	309.92 ± 0.02	312.0 ± 0.1	313.8 ± 0.1	316.59 ± 0.02	321.36 ± 0.05	322.96 ± 0.04	326.19 ± 0.03	327.85 ± 0.02	332.41 ± 0.04	334.86 ± 0.04	339.67 ± 0.03	341.4 ± 0.1	349.6 ± 0.1	352.2 ± 0.1	353.44 ± 0.03	360.3 ± 0.1	364.7 ± 0.1	367.85 ± 0.04	370.1 ± 0.1	371.4 ± 0.1	373.38 ± 0.04	376.0 ± 0.2	379.40 ± 0.03	391.01 ± 0.05	400.88 ± 0.06	410.53 ± 0.08	

NUCLEAR SCIENCE AND ENGINEERING VOL. 180 MAY 2015

100

		ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
	J Value	RPI																																	
		Present		1	1	1	- c	10	ı —	1	1	2	2	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Iso- tope	A		155	155	155	155 155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	
		ENDF		New	New	New	New New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
	$\Gamma_n \text{ (meV)}$	RPI																																	
		Present		40 ± 3	17 ± 1	99 ± 7	106 ± 8 126 ± 8	32 + 2	31 ± 3	51 ± 4	157 ± 13	12.9 ± 1.0	10.3 ± 0.9	145 ± 11	191 ± 15	44 ± 4	4050 ± 240	60 ± 5	113 ± 9	29 ± 2	1488 ± 80	84 ± 6	579 ± 52	45 ± 4	53 ± 4	31 ± 3	525 ± 49	89 ± 7	150 ± 12	35 ± 3	131 ± 11	29 ± 3	42 ± 4	28 ± 3	
ontinued		ENDF	-155	New	New	New	New New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	(p
ABLE VI (C	eV)	RPI	Gadolinium																																(Continue
T	Γ _γ (m	Γ_{γ} Source		AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	
		Present		127	127	127	127 133	133	127	127	127	133	133	127	127	127	127	127	127	127	133	127	127	127	127	127	127	127	127	127	127	127	127	127	
		ENDF		New	New	New	New New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
	hergy (eV)	RPI																																	
	Ш	Present		413.41 ± 0.08	427.01 ± 0.14	429.7 ± 0.1	448.83 ± 0.04 45203 ± 0.03	45915 ± 0.05	460.2 ± 0.1	466.7 ± 0.1	468.26 ± 0.04	475.6 ± 0.1	477.9 ± 0.1	481.82 ± 0.04	487.50 ± 0.04	497.2 ± 0.1	500.2 ± 0.1	505.4 ± 0.1	509.26 ± 0.04	516.0 ± 0.1	526.4 ± 0.1	532.3 ± 0.1	545.55 ± 0.04	553.3 ± 0.1	558.1 ± 0.1	567.8 ± 0.1	580.6 ± 0.1	586.1 ± 0.1	588.3 ± 0.1	592.7 ± 0.1	595.7 ± 0.1	602.8 ± 0.1	605.15 ± 0.05	611.3 ± 0.1	

MAY 2015

	1	1																																			
(b	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
J Value	RPI																																			_	
	Present		-	·			10	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	2	1	1	1	1	1	1	
Iso- tope	А		155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	
	ENDF	-	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
Γ_n (meV)	RPI																																				
	Present		26 + 2	135 + 12	40 ± 4	82 + 7	$\frac{5}{18}$ ± 2	37 ± 3	45 ± 4	77 ± 7	41 ± 3	132 ± 12	633 ± 61	100 ± 9	618 ± 63	161 ± 14	534 ± 52	124 ± 11	129 ± 11	51 ± 5	289 ± 27	1078 ± 97	57±5	41 ± 3	26 ± 2	63 ± 6	50 ± 5	134 ± 12	44 ± 4	46 ± 4	57 ± 5	74 ± 7	49 ± 5	128 ± 12	131 ± 12	460 ± 46	
	ENDF	-155	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	(p
(V)	RPI	Gadolinium																																			(Continue
Γ_{γ} (me	Γ_{γ} Source	-	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	
	Present		127	127	127	127	133	127	127	127	133	127	127	127	127	127	127	127	127	127	127	127	127	133	127	127	127	127	127	133	127	127	127	127	127	127	
	ENDF	_	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
inergy (eV)	RPI																																				
н	Present		616.5 ± 0.2	6738+01	627.0 ± 0.2	630.0 ± 0.1	638.01 ± 0.13	640.4 ± 0.2	642.8 ± 0.2	651.7 ± 0.1	658.5 ± 0.1	663.9 ± 0.1	669.4 ± 0.1	679.3 ± 0.1	681.8 ± 0.1	692.4 ± 0.1	695.5 ± 0.1	700.1 ± 0.1	707.76 ± 0.09	716.01 ± 0.19	723.2 ± 0.1	729.1 ± 0.1	737.0 ± 0.2	743.7 ± 0.1	754.7 ± 0.2	756.9 ± 0.1	764.4 ± 0.1	770.7 ± 0.1	772. 6 ± 0.2	775.4 ± 0.1	777.4 ± 0.2	781.4 ± 0.1	783.0 ± 0.2	788.1 ± 0.1	794.9 ± 0.1	807.2 ± 0.1	

NUCLEAR SCIENCE AND ENGINEERING VOL. 180 MAY 2015

KANG et al.

	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
J Value	RPI																							
	Present		1	1	2	1	1	1	2	1	2	1	2	1	1	1	1	1	7	1	2	1	1	
Iso- tope	A		155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155	
	ENDF	-	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
n (meV)	RPI																							
I	Present	-	726 ± 74	1057 ± 102	60 ± 5	106 ± 10	105 ± 10	260 ± 26	377 ± 34	48 ± 5	953 ± 90	431 ± 41	117 ± 10	317 ± 31	414 ± 41	97 ± 9	286 ± 27	235 ± 22	64 ± 6	223 ± 21	38 ± 3	70 ± 7	81 ± 8	
	ENDF	-155	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
() ()	RPI	Gadolinium																						Continue
Γ_{γ} (me	Γ_{γ} Source	-	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	
	Present		127	127	133	127	127	127	133	127	133	127	133	127	127	127	127	127	133	127	133	127	127	
	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
nergy (eV)	RPI																							
E	Present		811.6 ± 0.1	828.1 ± 0.1	833.5 ± 0.1	839.8 ± 0.1	864.9 ± 0.2	869.1 ± 0.1	875.66 ± 0.04	888.1 ± 0.4	890.5 ± 0.1	897.7 ± 0.1	904.3 ± 0.1	913.15 ± 0.11	918.7 ± 0.1	922.1 ± 0.2	934.3 ± 0.2	944.2 ± 0.1	957.13 ± 0.08	961.88 ± 0.08	973.4 ± 0.2	987.1 ± 0.2	990.6 ± 0.2	

GADOLINIUM NEUTRON CAPTURE AND RESONANCE PARAMETERS

TABLE VI (Continued)

	ENDF		0.5	1.5	1.5	0.5	0.5	0.5	0.5	0.5	0.5	1.5	0.5	0.5	0.5	0.5	0.5	0.5	1.5	0.5	1.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.5	0.5	
'alue	RPI		0.5			0.5		0.5	0.5	0.5	0.5																									
^ / 	Present		0.5	Discarded ^a	Discarded ^a	0.5	Discarded ^a	0.5	0.5	0.5	0.5	Discarded ^a	0.5	0.5	0.5	0.5	0.5	Discarded ^a	Discarded ^a	0.5	Discarded ^a	Discarded ^a	Discarded ^a	Discarded ^a	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	Discarded ^a	0.5	
Iso- tope	Α		156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	156	
	ENDF		14.6	0.0065	0.013	78.8	0.87	41.7	218	72	3.1	0.095	683	146	2.5	117	120	1.1	0.225	145	0.225	3.6	3.201	4.6	77	812	300	200	642.003	124.998	2.1	29	165	1	128	
Γ_n (meV)	RPI		14 ± 2			80 ± 20		23 ± 7	200 ± 100	50 ± 10	3.25 ± 0.06																									
	Present	99	14.2 ± 0.3	Discarded ^a	Discarded ^a	78 ± 8	Discarded ^a	39 ± 4	246 ± 25	39 ± 4	1.85 ± 0.18	Discarded ^a	591 ± 59	227 ± 23	2.8 ± 0.3	129 ± 13	119 ± 12	Discarded ^a	Discarded ^a	161 ± 16	Discarded ^a	Discarded ^a	Discarded ^a	Discarded ^a	64 ± 6	1320 ± 130	436 ± 44	184 ± 18	751 ± 75	107 ± 11	2.1 ± 0.2	35 ± 3	148 ± 15	Discarded ^a	120 ± 12	
	ENDF	inium-15	90	85	85	85	85	80	80	80	80	85	80	80	85	80	80	80	80	80	80	80	79.99	80	80	80	70	80	94	97	80.03	80	79	85	80	ntinued)
	RPI	Gadol	98 ± 3			80 ± 7		80 ± 30	92 ± 4	160 ± 40	98 ± 9																									<u>ಲ</u>
Γ_{γ} (meV	Γ_{γ} Source		ENDF			FIT		FIT	FIT	FIT	ENDF		FIT	FIT	ENDF	FIT	FIT			FIT					FIT	FIT	FIT	FIT	FIT	FIT	ENDF	FIT	FIT		FIT	
	Present		06	Discarded ^a	Discarded ^a	71 ± 7	Discarded ^a	140 ± 14	72 ± 7	80 ± 8	80	Discarded ^a	69 ± 7	72 ± 7	85	40 ± 4	65 ± 6	Discarded ^a	Discarded ^a	64 ± 6	Discarded ^a	Discarded ^a	Discarded ^a	Discarded ^a	7 ± 69	67 ± 7	71 ± 7	56 ± 6	82 ± 8	74 土 7	80.03	85 ± 9	58 ± 6	Discarded ^a	69 ± 7	
	ENDF		33.23	56.8	72.2	80.1	110.5	150.4	198.5	201.8	244.9	258.3	341	376.7	427.3	451.4	477	481.2	494.3	515.7	549	563.6	606.8	662.7	705.5	713.3	729.7	794.3	821.9	842.2	854.2	826.8	900.1	974	981.1	
ergy (eV)	RPI		33.14 ± 0.03			80.04 ± 0.07		150.62 ± 0.03	198.4 ± 0.2	201.99 ± 0.01	245.16 ± 0.02																								_	
Ē	Present		33.149 ± 0.001	Discarded ^a	Discarded ^a	80.002 ± 0.002	Discarded ^a	150.431 ± 0.005	198.42 ± 0.01	201.82 ± 0.01	245.00 ± 0.09	Discarded ^a	340.97 ± 0.02	376.66 ± 0.02	427.3 ± 0.1	451.44 ± 0.03	477.07 ± 0.03	Discarded ^a	Discarded ^a	515.65 ± 0.03	Discarded ^a	Discarded ^a	Discarded ^a	Discarded ^a	705.35 ± 0.04	713.2 ± 0.1	729.9 ± 0.1	794.11 ± 0.03	822.0 ± 0.1	842.81 ± 0.08	855.8 ± 0.5	856.7 ± 0.1	900.1 ± 0.1	Discarded ^a	980.93 ± 0.02	

		ENDF		2.0	ı —	2	2 12	7 -	5	1	2	2	2	1	1	7	5			1	0	0 0	۹ ر	10	10	5	2	2	1	2		2	
	I Value	RPI		2 5	ı —	7	2 10	7 -	0	1	0	7	7	1	1	7	0	0	<u> </u>		0	0 0	۹ c	1		1	1	0	1	0	⁷ , ⁷	_	
	,	Pres- ent		2 5	1 –	2	2 10	7 -	0	1	2	2	7	1	1	7	0	5		-	0	0 0	4 C	10	10		1	2	1	2	7, 12	_	
	Iso- tope	А		157 157	157	157	157	151	157	157	157	157	157	157	157	157	157	157	157	157	157	157	151	157	157	157	157	157	157	157	157	157	
		ENDF		0.47	0.4	12.8	11.4	0.38	1.84	1.3	8.96	24	28	14.66	20	6.16	10.2	20.3	46.66	57.33	5.6	42.4	13.7	2C1 0.88	47.2	49.6	9	60	24	19.76	34.27	2	
	Γ_n (meV)	RPI		0.428 ± 0.004 0.377 + 0.004	0.44 ± 0.03	13.9 ± 0.5	13.4 ± 0.4	0.34 ± 0.08 1.3 + 0.3	1.99 ± 0.06	1.6 ± 0.2	9 ± 5	26.7 ± 0.5	32.0 ± 0.6	16 ± 2	24 ± 2	7.1 ± 0.6	11.1 ± 0.4	22.0 ± 0.4	43 ± 1	70 ± 40	4 ± 1	50 ± 20	22.2 ± 0.9	1+0 - +0		21 ± 9	40 ± 10	60 ± 10	24 ± 1	13 ± 5	23 ± 6	3.333	
(pa		Present		0.428 ± 0.004 0 377 + 0 004	0.44 ± 0.03	13.9 ± 0.5	13.4 ± 0.4	0.38 ± 0.02 0.78 ± 0.04	1.71 ± 0.04	1.34 ± 0.06	9.9 ± 0.2	26.2 ± 0.7	31.3 ± 3.1	17.1 ± 0.4	25 ± 2	6.7 ± 0.7	11.1 ± 1.1	12.6 ± 1.3	51 ± 1	70 ± 4	5.1 ± 0.2	64 ± 2	V = V	0.93 ± 0.09	30.3 ± 1.2	13 ± 1	14.3 ± 0.7	54 ± 5	25 ± 3	20 ± 2	22 ± 2	2.4 ± 0.2	
Continue		ENDF	n-157	106 97	91	81	88 111	114 121	85	110	96	90	101	67	108	85	128	110	94	70	85 2	85	112	85	85	86	85	88	85	91	100 ?	85	led)
ABLE VI (eV)	RPI	Gadoliniu	107 ± 3 109 7 + 0 9	130 ± 30	112 ± 7	106 ± 8	80 ± 40 140 + 30	130 ± 30	120 ± 40	120 ± 70	118 ± 9	140 ± 20	130 ± 60	110 ± 40	100 ± 70	140 ± 10	100 ± 40	100 ± 30	103 ± 2	120 ± 30	140 ± 50	140 ± 20 130 + 30			100 ± 10	100 ± 70	130 ± 30	140 ± 30	140 ± 50	100 ± 80	99.95	(Contini
L	Γ_{γ} (m	Γ_{γ} Source		RPI RPI	RPI	RPI	RPI	ENDF	ENDF	ENDF	ENDF	FIT	FIT	FIT	ENDF	ENDF	ENDF	ENDF	ENDF	FIT	ENDF	ENDF	EIT	ENDF	FIT	FIT	ENDF	FIT	FIT	FIT	FIT	ENDF	
		Present		107 ± 3 109 7 + 0 9	130 ± 30	112 ± 7	106 ± 8	114 121	85	110	96	108 ± 5	117 ± 12	95 ± 5	108	85	128	110	94	93 ± 6	85	85	$112 05 \pm 0$	85 - 20 85	138 ± 5	108 ± 11	85	147 ± 15	109 ± 11	112 ± 11	95 ± 10	85	
		ENDF		0.0314	16.24	16.77	20.56	23.33 23.33	25.4	40.17	44.22	48.8	58.38	66.65	81.48	82.3	87.46	96.6	100.2	105.3	107.7	110.5	120.0	135.19	137.9	138.8	139.3	143.54	148.4	156.38	164.83	167.88	
	nergy (eV)	RPI		0.032 ± 0.003	16.201 ± 0.005	16.78 ± 0.01	20.51 ± 0.02	23.28 ± 0.03	25.35 ± 0.01	40.08 ± 0.01	44.11 ± 0.04	48.68 ± 0.03	58.26 ± 0.03	66.53 ± 0.01	81.30 ± 0.04	82.10 ± 0.04	87.17 ± 0.03	96.6 ± 0.1	100.16 ± 0.06	104.89 ± 0.08	107.46 ± 0.06	110.54 ± 0.07	110.0 ± 70.00	10.0 - 00.021		138.2 ± 0.2	139.37 ± 0.05	143.75 ± 0.01	148.55 ± 0.05	156.70 ± 0.02	165.00 ± 0.09	168.60 ± 0.04	
	E	Present		0.032 ± 0.003	16.201 ± 0.005	16.78 ± 0.01	20.51 ± 0.02	23.27 ± 0.01	25.349 ± 0.003	40.11 ± 0.01	44.104 ± 0.002	48.685 ± 0.002	58.252 ± 0.002	66.479 ± 0.004	81.240 ± 0.004	82.04 ± 0.01	87.099 ± 0.004	96.488 ± 0.005	100.076 ± 0.004	104.822 ± 0.004	107.27 ± 0.01	110.451 ± 0.004	110.262 ± 0.004	125.19 ± 0.05	137.96 ± 0.02	138.1 ± 0.1	138.81 ± 0.02	143.629 ± 0.004	148.30 ± 0.01	156.47 ± 0.01	164.77 ± 0.01	167.84 ± 0.02	

MAY 2015

105

		ENDF		- 1	- 0		- 7	1	New	2	2	7	1	New	1	New	7	New	New	1	1	7	1	7	7	1	2	2	1	7		1	
	J Value	RPI		2	- 7	- 12	- 6		Unassigned	2		2	1		1		2			2	1	7	1	1	1	1	2	2	2	2	1	2	
		Present		- 2	- 7	- 17	- 7	1	1	2	2	7	1	7	1	1	2	1	2	2	1	7	1	1	1	1	2	2	2	7	1	2	
	Iso- tope	А		157 157	157	157 157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	
		ENDF		3.28 44	16	29.33 78	<u>-</u> 2 44.8	9.6	New	0.976	1.36	108	8	New	4	New	6.56	New	New	253	4.4	9.28	5.73	2.2	2.24	21.86	6.4	10.5	64	14	65	61	
	n_n (meV)	RPI		3.4 ± 0.2 120 + 40	17.0 ± 1.0	34 ± 8 60 + 60	60 ± 80		8.3 ± 0.3	2.0 ± 0.1		110 ± 30	19.9 ± 0.9		8.3 ± 0.4		52 ± 3			250 ± 40	19.8 ± 0.5	5.0 ± 0.1	8.2 ± 0.2	18.6 ± 0.5	1.46 ± 0.09	31 ± 3	7.9 ± 0.2	17.0 ± 0.9	70 ± 30	25 ± 3	51 ± 9	49 ± 8	
ontinued)	Ι	Present	157	3.3 ± 0.3 136 ± 0	15.9 ± 1.6	18 ± 2 36 ± 4	44 + 4 + 4	9.4 ± 0.9	1.88 ± 0.18	2.3 ± 0.2	74.7±4	11 ± 1	9.4 ± 0.9	0.55 ± 0.06	3.2 ± 0.2	4.7 ± 0.4	9 ± 1	1.4 ± 0.1	2.0 ± 0.2	227 ± 23	4.1 ± 0.4	7.1 ± 0.5	5.8 ± 0.4	2.3 ± 0.2	1.84 ± 0.18	30.4 ± 1.3	6.9 ± 0.4	9.2 ± 0.9	43 ± 4	13 ± 1	61 ± 6	49 ± 5	J)
VI (Co		ENDF	dolinium-	85 85	145	85 85	85	85	New	85	85	114	85	New	85	New	85	New	New	85	85	85	85	85	85	85	85	85	85	85	85	85	Continue
TABLE	leV)	RPI	Ga	90 ± 10 100 + 10	140 ± 20	100 ± 90 100 ± 90	110 ± 50		130 ± 10	110 ± 10		150 ± 20	121 ± 9		150 ± 20		100 ± 100			120 ± 20	118 ± 9	120 ± 10	130 ± 10	130 ± 10	101 ± 10	120 ± 10	110 ± 10	140 ± 20	110 ± 100	100 ± 50	100 ± 50	130 ± 30	<u> </u>
	Γ_{γ} (m	Γ_{γ} Source		ENDF	ENDF	FIT FIT	FIT	ENDF	AVG	ENDF	ENDF	FIT	ENDF	AVG	ENDF	AVG	ENDF	AVG	AVG	FIT	ENDF	ENDF	ENDF	ENDF	ENDF	FIT	ENDF	ENDF	FIT	ENDF	FIT	FIT	
		Present		85 110+6	145 - 3	110 ± 11 114 ± 11	124 ± 12	85	102	85	85	138 ± 12	85	111	85	102	85	102	111	89 ± 9	85	85	85	85	85	125 ± 10	85	85	75±8	85	92 ± 9	89 ± 9	
		ENDF		169.5 171 2	178.48	183.76 190.58	194.4	202.69	New	205.35	206.9	208.5	216.9	New	220.65	New	228.05	New	New	239.3	244.6	246.39	250.2	255	255.2	260.05	265.8	268.02	281.02	287.6	290.8	293.7	
	nergy (eV)	RPI		169.4 ± 0.1 171 2 + 0 2	178.73 ± 0.03	183.94 ± 0.07 190.9 + 0.1	194.6 ± 0.1		203.39 ± 0.02	205.75 ± 0.04		207.77 ± 0.04	217.23 ± 0.01		220.24 ± 0.08		227.91 ± 0.02			239.56 ± 0.03	246.80 ± 0.01	248.83 ± 0.01	250.51 ± 0.02	254.87 ± 0.01	256.46 ± 0.06	260.53 ± 0.01	266.05 ± 0.01	268.47 ± 0.01	282.28 ± 0.05	287.89 ± 0.04	291.08 ± 0.03	294.16 ± 0.01	
	Ē	Present		169.32 ± 0.03	178.58 ± 0.01	183.86 ± 0.01	194.48 ± 0.01	202.81 ± 0.06	203.32 ± 0.04	205.56 ± 0.04	207.47 ± 0.01	208.09 ± 0.02	217.01 ± 0.03	218.24 ± 0.17	220.36 ± 0.08	221.20 ± 0.05	228.21 ± 0.02	232.9 ± 0.1	237.97 ± 0.09	239.38 ± 0.01	246.46 ± 0.09	246.57 ± 0.02	250.27 ± 0.03	254.65 ± 0.10	257.00 ± 0.18	260.26 ± 0.01	265.73 ± 0.02	268.29 ± 0.03	281.77 ± 0.01	287.47 ± 0.03	290.81 ± 0.02	293.82 ± 0.01	

106

		DF			7	ew	e We	ЭW	ЭW	ЗW	ew	ЭW	ew	ew	ew	ew	ew	ЭW	ew	ЗW	ew	ew	ew	ew	ew	ew	ew	ew	ew	ew	ЭW	ЭW	эw	ЭW	эw	эw	ew	
		EN	-		1	ΖŽ	ΖŽ	Ž	ž	Ž	Ž	Ž	Ž	Ž	Ź	Ź	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ź	Ź;	Ź	Ž	ž	ž	ž	ž	ž	ž	ž	ž	Ž	
	I Value	IdN																																				
	•	Present		- - -	Discarded	7 6	ı —	2	1	7	1	1	1	2	<u> </u>		2	2	1	1	1	1	5	1	1	<u> </u>	1	-	1	1	1	1	2	1	1	1	1	
	Iso- tope	Α		157	101	161 157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	
		ENDF		53.333	2.8	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
	(meV)	RPI																																			_	
Continued)	Γ_n	Present	m-157	64.3 ± 6.4	Discarded	39.1 ± 1.0 32.6 ± 1.3	129 ± 11	113 ± 7	194 ± 12	100 ± 5	33 ± 2	4.0 ± 0.4	223 ± 18	166 ± 10	5.9 ± 0.6	75±5	54 ± 2	87±4	66 ± 4	119 ± 9	35 ± 2	13.7 ± 1.1	32 ± 2	64 ± 4	17 ± 1	113 ± 8	18 ± 1	49 ± 3	282 ± 25	58 ± 4	40 ± 3	9.8 ± 0.9	44 ± 2	18 ± 1	8.3 ± 0.8	30 ± 2	290 ± 27	ied)
SLE VI (ENDF	Gadoliniu	85 85	C8	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	(Continu
TAI	(RPI																																				
	Γ_{γ} (meV	$\Gamma_{\gamma}^{}$ Source		FIT		AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	
		Present		105 ± 11	Discarded	111	102	111	102	111	102	102	102	111	102	102	111	111	102	102	102	102	111	102	102	102	102	102	102	102	102	102	111	102	102	102	102	
		ENDF		300.9	300.4	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
	(eV)	RPI																																				
	Energy	Present		301.09 ± 0.02	Discarded	319.93 ± 0.02 321.96 ± 0.02	331.99 ± 0.03	333.08 ± 0.03	339.10 ± 0.02	350.46 ± 0.01	368.26 ± 0.03	376.4 ± 0.1	381.30 ± 0.02	388.79 ± 0.02	396.04 ± 0.12	397.92 ± 0.01	401.38 ± 0.01	410.28 ± 0.02	416.60 ± 0.03	420.19 ± 0.03	422.35 ± 0.04	430.01 ± 0.04	445.62 ± 0.03	451.17 ± 0.02	456.1 ± 0.1	458.27 ± 0.03	460.4 ± 0.1	472.00 ± 0.02	475.87 ± 0.03	485.00 ± 0.04	486.8 ± 0.1	500.6 ± 0.1	505.23 ± 0.03	510.7 ± 0.1	527.3 ± 0.2	529.6 ± 0.1	531.46 ± 0.03	

(Continued)	
TABLE VI	

	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	_
J Value	RPI																																				
	Present			1	2	. –	1	1	1	1	2	7	2	2	2	2	7	2	1	1	1	—		6			2	1	1	7	1	1	1	1	1	1	
Iso- tope	А		157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	
	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
(meV)	RPI																																				
Γ_n	Present	m-157	744 ± 54	134 ± 12	20 ± 1	25 ± 2	15 ± 1	32 ± 3	25 ± 2	611 ± 51	21 ± 1	9.4 ± 0.8	29 ± 2	36 ± 2	66 ± 4	17 ± 1	31 ± 2	13.6 ± 1.1	53 ± 4	62 ± 5	23 ± 2	37 ± 3	34 ± 3	263 ± 21	107 ± 9	89 ± 8	21 ± 2	133 ± 12	70 ± 6	151 ± 12	172 ± 16	16 ± 2	604 ± 51	62 ± 6	124 ± 12	35 ± 3	led)
	ENDF	Gadoliniu	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	(Continu
	RPI																																				
Γ_{γ} (meV	Γ_γ Source		AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	
	Present		102	102	111	102	102	102	102	102	111	111	111	111	111	111	111	111	102	102	102	102	102	111	102	102	111	102	102	111	102	102	102	102	102	102	
	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
(eV)	RPI																																				
Energy	Present		538.60 ± 0.03	540.94 ± 0.04	551.10 ± 0.03	555.90 ± 0.02	567.9 ± 0.1	571.3 ± 0.1	584.3 ± 0.1	593.26 ± 0.04	602.79 ± 0.05	610.02 ± 0.08	613.02 ± 0.04	626.00 ± 0.04	631.85 ± 0.03	634.6 ± 0.1	639.07 ± 0.05	644.0 ± 0.1	658.1 ± 0.1	$661. 1 \pm 0.1$	667.0 ± 0.1	678.5 ± 0.1	681.0 ± 0.1	688.24 ± 0.04	696.8 ± 0.1	699.0 ± 0.1	707.77 ± 0.06	710.0 ± 0.1	717.5 ± 0.1	720.43 ± 0.05	725.6 ± 0.1	729.6 ± 0.2	733.1 ± 0.1	$756. 7 \pm 0.1$	757.4 ± 0.1	767.7 ± 0.2	

NUCLEAR SCIENCE AND ENGINEERING VOL. 180 MAY 2015

· · · · · · · · · · · · · · · · · · ·																											
	ENDF		New	New	New	New	New	New		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
J Value	RPI																										
	Present		2	2	1	2	2	2	2	1	1	1	2	1	2	1	1	2	1	1	1	1	2	2	2	2	
Iso- tope	A		157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	
	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
(meV)	RPI																										
Γ_n	Present	m-157	55 ± 4	1895 ± 114	179 ± 18	76 ± 6	179 ± 15	35 ± 3	37 ± 3	26 ± 3	342 ± 34	97 ± 9	153 ± 12	507 ± 49	98 ± 8	71 ± 7	265 ± 26	53 ± 4	49 ± 5	120 ± 11	40 ± 4	106 ± 12	467 ± 46	20 ± 2	31 ± 3	135 ± 11	led)
	ENDF	Gadoliniu	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	(Continu
	RPI																										
Γ_{γ} (meV	Γ_{γ} Source		AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	AVG	
	Present		111	111	102	111	111	111	111	102	102	102	111	102	111	102	102	111	102	102	102	102	111	111	111	111	
	ENDF		New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	New	
/ (eV)	RPI																										
Energy	Present		769.3 ± 0.1	778.82 ± 0.03	783.8 ± 0.1	792.32 ± 0.04	796.9 ± 0.1	814.3 ± 0.1	819.1 ± 0.1	825.6 ± 0.2	829.0 ± 0.1	831.0 ± 0.1	841.6 ± 0.1	848.4 ± 0.1	855.0 ± 0.1	874.6 ± 0.1	878.7 ± 0.1	893.83 ± 0.04	896.7 ± 0.2	912.77 ± 0.11	925.6 ± 0.2	952.2 ± 0.2	954.8 ± 0.1	964.6 ± 0.2	975.8 ± 0.3	988.7 ± 0.1	

MAY 2015

GADOLINIUM NEUTRON CAPTURE AND RESONANCE PARAMETERS

TABLE VI (Continued)	J Value	ENDF		0.5 0.5	0.5	0.5	New	0.5	0.5	0.5	0.5	0.5	0.5		0.5 0.5	0.0 Z	0.5	0.5	1.5	. r v	0.5	0.5	
		RPI		$\begin{array}{c} 0.5\\ 0.5\end{array}$	0.5	0.5	Unassigned								0.5	C.U							
		Present		$\begin{array}{c} 0.5\\ 0.5\end{array}$	0.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	Discarded 0.5		$\frac{0.5}{0.5}$	C.U dt - t: C	Discarded ^b	0.5	Discarded ^b	Discarded ^b	0.5	Discarded ^b	
	Isotope	А			158 158	158 158	158	158	158 158	158	158	158	158	158 158		160	160	160	160	160	160	160	160
	Γ_n (meV)	ENDF		74 6.8	0.85 58	13	New	157 272	270	57	755	1700	1.0 460		6374 20	50 275	د/.u 19	345		2.45 2.45	3500	4.6	
		RPI		7.1 ±0.8	1.3 ± 0.2 50 + 20	40 ± 60	1.5 ± 0.3									07 ± 00							
		Present	158	$\begin{array}{c} 74 \\ 7.2 \pm 0.1 \end{array}$	1.4 ± 0.1 36 + 4	16 ± 2	1.03 ± 0.09	283 ± 28 353 + 35	353 ± 35	49 ± 5	736 ± 74	2680 ± 270	$D1SCarded^{2}$ 689±69	160	6374	48±5	Discarded ^b	457 ± 46	Discarded ^b	Discarded ^b	4570 ± 460	Discarded ^b	
	Γ_{γ} (meV)	ENDF	olinium-	96 96	88 105	90	New	93 100	105	112	95	107	83 83	olinium-	88	120	ç	125	88	60 88	105	89	
		RPI	Gad	100 ± 40	120 ± 10 90 + 20	100 ± 300	110 ± 10							Gad		80 ± 20							
		$\Gamma_{\gamma}^{}$ Source		ENDF	ENDF	ENDF	AVG	FIT	FIT	FIT	FIT	FIT	FIT		ENDF	L		FIT			FIT		
		Present		96 96	88 132+13	90	74 20 / 2	63 ± 6 73+7	67 ± 7	125 ± 12	58 ± 6	80 ± 8	$D1scarueu^{-1}$ 84 ± 8		88	111 ± 11 D'1-ab	Discarded ^b	87 ± 9	Discarded ^b	Discarded ^b	127 ± 13	Discarded ^b	
		ENDF		-65 22.3	101.1 242.7	277.2	New	344.8 409 1	503.3	588.5	692.9	847.3	017.1 017.1		-326	777	421.9 447.9	478.9	571.8 707 5	752.6	904.9	984	
	nergy (eV)	RPI		22.30 ± 0.04	101.20 ± 0.09 243.17 + 0.01	277.38 ± 0.06	298.0 ± 0.1									222.22 ± 0.03							
	Ð	Present		-65 22.295 ± 0.001	101.12 ± 0.01 242.87 ± 0.01	277.41 ± 0.01	298.72 ± 0.02	345.08 ± 0.01 409 14 + 0.02	503.51 ± 0.02	588.78 ± 0.03	693.1 ± 0.1	847.0 ± 0.1	917.8 ± 0.1		-326	10.0 ± 00.222	Discarded ^b	479.37 ± 0.03	Discarded ^b	Discarded ^b	904.4 ± 0.2	Discarded ^b	

KANG et al.

^aOnly ENDF/B-VII.0. ^bENDF/B-VI.8 and ENDF/B-VII.0.

NUCLEAR SCIENCE AND ENGINEERING VOL. 180 MAY 2015

Each $<\Gamma_{\gamma}>$ in Table VII was an inverse-variance weighted average of radiation widths from sensitive resonances. The radiation widths and uncertainties of new resonances in Table VI were assigned $<\Gamma_{\gamma}>$ and $\Delta<\Gamma_{\gamma}>$ from Table VII for their radiation widths.

The fifth column in Table VI, labeled " Γ_{γ} Source," designates whether the $\Gamma\gamma$ in Table VI was fitted from the data (FIT), fixed to an average value from Table VII (AVG), fixed to the ENDF/B-VII.0 value (ENDF), or fixed to the previous RPI value (RPI) where the neutron energy was <21 eV.

Potential sources of uncertainty include the capture flux normalization and the analytical descriptions of the resolution functions. Uncertainties in sample thicknesses given in Table III were not included in the final uncertainties given in Table VI. The resonance parameters for ¹⁵²Gd were not fitted because the abundance was very low. In these cases the resonance parameters were assigned ENDF/B-VII.0 values in Table VI without any quoted errors.

Figure 2 shows transmission and capture yield data in the epithermal region for the natural Gd sample and calculated curves using resonance parameters obtained by the SAMMY program. The transmission data in Fig. 2 were taken from the previous RPI measurement.¹⁷ The SAMMY fit in Figs. 2 and 3 is the calculated curve using the resonance parameters obtained from the present data. The present resonance parameters were determined using the capture yields for five enriched Gd isotopic samples and a natural sample. Figure 3 shows transmission data for the natural Gd sample in the neutron energy region from 10 to 300 eV and calculated curves using resonance parameters from the present data, ENDF/B-VII.0 (Ref. 26), and the previous RPI result¹⁷ by using the SAMMY program without fitting. The resonance parameters from the present and the previous RPI data agree with the experimental transmission better than those of ENDF/B-VII.0.

We observed 2, 169, 96, and 1 new resonances not listed in ENDF/B-VII.0 from the ¹⁵⁴Gd, ¹⁵⁵Gd, ¹⁵⁷Gd, and ¹⁵⁸Gd isotopes, respectively, as listed in Table VI. Because the present measurements did not support their existence, 11 resonances from the ¹⁵⁶Gd isotope; 1 resonance from the ¹⁵⁷Gd and ¹⁵⁸Gd isotopes, respectively; and 6 resonances from the ¹⁶⁰Gd isotope listed in ENDF/B-VII.0 were discarded Recently, new measurements of resonance parameters for ¹⁵⁵Gd with the DANCE gamma-ray calorimeter at the LANSCE were presented.⁹ Four new resonances identified in Ref. 9 were confirmed in the present results: 22.32, 68.81, 116.79, and 138.34 eV in the ¹⁵⁵Gd isotope. However, the spin assignments for 38 resonances were different from those in ENDF/B-VII.0 or the present result. We checked the present resonance parameters using the spin assignment in Ref. 9, but we could not see any differences. Thus, the determination of Γ_{γ} and Γ_n was not sensitive to the spin assignment.

Fitting results are shown in Fig. 4 with the final resonance parameters in the neutron energy region from 200 to 250 eV, where there are many new resonances listed in Table VI. The data for *nat*Gd were fitted very nicely with the new resonance parameters from the Gd isotopes as shown in Fig. 4. In this energy region, 12 unassigned resonances from the previous RPI measurement in Table VI were identified. Two resonances in ENDF excluded by the previous RPI measurement were identified: 202.81 eV in ¹⁵⁷Gd and 207.47 eV in ¹⁵⁷Gd. The 201.6-eV resonance in ¹⁵⁴Gd, identified by Ref. 10, was reported at 201.4 eV in Table VI, while the previous RPI result showed it at 199.5 eV. A resonance at 202.1 eV in 156Gd was observed. It had been included in ENDF/B-VI.8 but was excluded from ENDF/B-VII.0. The resolved resonance representation for ¹⁵⁵Gd ends at 180 eV in ENDF/B-VII.0. It was extended to 300 eV by the previous RPI measurement.^{17,30} Reference 30 is a comprehensive version of Ref. 17. Twelve new resonances

TABLE VII

Gadolinium Isotope	J	Average Radiation Width $\langle \Gamma_{\gamma} \rangle \pm \Delta \langle \Gamma_{\gamma} \rangle$ (meV)	Comment
¹⁵² Gd	0.5	Unknown	No data
¹⁵⁴ Gd	0.5	75 ± 1	41 resonances
¹⁵⁵ Gd	1	127 ± 12	5 resonances
¹⁵⁵ Gd	2	133 ± 10	3 resonances
¹⁵⁶ Gd	0.5	65 ± 4	18 resonances
¹⁵⁷ Gd	2	$\begin{array}{c} 102 \pm 3 \\ 111 \pm 6 \\ 74 \pm 7 \\ 103 \pm 12 \end{array}$	9 resonances
¹⁵⁷ Gd	0.5		13 resonances
¹⁵⁸ Gd	0.5		8 resonances
¹⁶⁰ Gd	0.5		3 resonances

Average Radiation Width $\langle \Gamma_{\gamma} \rangle$ for Each Gd Isotope in the Energy Range from 10 to 1000 eV

Fig. 2. (a) Transmission data and (b) capture yield for ^{*nat*}Gd with a fitting curve using resonance parameters obtained with the SAMMY program.

(201.76, 207.19, 216.88, 218.34, 219.98, 224.78, 227.57, 231.68, 235.31, 236.27, 243.27, and 248.68 eV) in 155 Gd and four new resonances (218.24, 221.20, 232.90, and 237.97 eV) in 157 Gd that were not identified in either ENDF/B-VII.0 or the previous RPI measurement have been added in the 200- to 250-eV region. Among 11 unassigned resonances from the previous RPI measurement, 10 resonances were assigned to the 155 Gd isotope, and 1 resonance at 203.39 eV was identified as 157 Gd at 203.32 eV, as listed in Table VI.

Fitting results in the neutron energy region from 250 to 300 eV are shown in Fig. 5. Ten new resonances from ¹⁵⁵Gd were identified in the 250- to 300-eV regions that were not included in ENDF/B-VII.0 or the previous RPI results. The resonance at 298.0 eV from the previous RPI measurement (with only natural samples) was identified in ¹⁵⁸Gd at 298.7 eV. One resonance at 258.3 eV in ¹⁵⁶Gd, listed in ENDF/B-VII.0, was not seen in the present measurement.

These results have been reviewed at RPI and supersede parameters given in Refs. 17 and 30 from

Fig. 3. Transmission of the previous RPI data¹⁷ with curves using resonance parameters from present, RPI (Ref. 17), and ENDF/B-VII.1 (Ref. 29) in the neutron energy region (a) from 10 to 150 eV and (b) from 150 to 300 eV.

measurements of only elemental samples. The previous RPI measurement^{17,30} ended at 300 eV. All of the 28 new resonances identified in the previous measurement have been confirmed and assigned to an isotope and a spin state J. They are included in Table VI.

Above 300 eV, very few measurements are reported.^{10,12,14} We identified 116 new resonances from ¹⁵⁵Gd and 90 new resonances from ¹⁵⁷Gd in the 300- to 1000-eV region. Figure 6 includes seven resonances (481.2, 494.3, 549, 563.6, 606.8, 662.7, and 974 eV) from ¹⁵⁶Gd, one resonance (306.4 eV) from ¹⁵⁷Gd, one resonance (869.3 eV) from ¹⁵⁸Gd, and six resonances (421.9, 447.9, 571.8, 707.5, 752.6, and 984 eV) from ¹⁶⁰Gd listed in ENDF/B-VII.0 that have been discarded from the present analysis.

Fig. 4. Capture yield data and calculated fitting curves in the neutron energy region from 200 to 250 eV using the resonance parameters obtained with the SAMMY program.

Fig. 5. Capture yield data and calculated fitting curves in the neutron energy region from 250 to 300 eV using the resonance parameters obtained with the SAMMY program.

Fig. 6. Capture yield data and calculated fitting curves in the neutron energy region (a) from 300 to 600 eV and (b) from 600 to 1000 eV using the resonance parameters obtained with the SAMMY program.

V.B. Resonance Integrals

Equation (2) and the resonance parameters listed in Table VI were used to calculate resonance integrals. The resonance integral calculations used resonance parameters from the previous RPI measurement in the energy range 0.02 to 21 eV and from ENDF/B-VII.0 for the negative energy resonances and for the energy region above the present measurement. The resonance integrals were calculated using the NJOY (Ref. 27) and the INTER (Ref. 28) programs. The results are shown in Table VIII in units of barns. The uncertainty in the resonance integrals was calculated by differentiating the resonance integral with respect to resonance parameters according to the error propagation formula and treating $\sigma_{\gamma}(E)$ as a sum of single-level Breit-Wigner resonances.²⁵ The resonance integral of ¹⁵²Gd in the RPI column used resonance parameters from ENDF/B-VI.8. The resonance integral of ¹⁵⁴Gd is 16% larger than that calculated from the ENDF/ B-VII.0 resonance parameters. The contributions of ¹⁵⁵Gd to the elemental Gd capture resonance integral are more than half, and their contribution is similar to that calculated using the resonance parameters from ENDF/ B-VII.0 and RPI. The present parameters gave a resonance integral value of 395 \pm 2 b, which is ~0.8% higher and $\sim 1.7\%$ lower than that obtained with the ENDF/B-VII.0 parameters and with the previous RPI parameters, respectively.

VI. CONCLUSIONS

Resonance parameters were extracted from capture data sets for Gd isotopes using the multilevel R-matrix Bayesian code SAMMY. The analysis included Doppler broadening, resolution broadening, and multiple scattering correcting of capture data.

We observed 2, 169, 96, and 1 new resonances from the ¹⁵⁴Gd, ¹⁵⁵Gd, ¹⁵⁷Gd, and ¹⁵⁸Gd isotopes, respectively.

Calculated Capture Resonance Integrals for Gd Isotopes in the Energy Range from 0.5 eV to 20 MeV

		Captu	re Resonance Integral (Percent Change (%)			
Isotope	Abundance (%)	Present	ENDF/B-VII.0	RPI	ENDF/B-VII.0	RPI	
¹⁵² Gd ¹⁵⁴ Gd ¹⁵⁵ Gd ¹⁵⁶ Gd ¹⁵⁷ Gd ¹⁵⁸ Gd ¹⁶⁰ Gd	0.20 2.18 14.80 20.47 15.65 24.84 21.86	$560 252 \pm 8 1535 \pm 9 102 \pm 2 776 \pm 6 70 \pm 1 73 \pm 01$	560 217 1539 108 753 68 8 2	476 261 1570 104 789 71.5 7 66	$ \begin{array}{r} 0 \\ + 16 \\ - 0.3 \\ - 6 \\ + 3 \\ + 3 \\ - 11 \end{array} $	+18 - 4 - 2.3 - 2 - 2 - 2 - 2 - 5	
natGd	_	395 ± 2	392	402	+0.8	-1.7	

Because the present measurements did not support their existence, 11 resonances from the ¹⁵⁶Gd isotope, 1 resonance each from the ¹⁵⁷Gd and ¹⁵⁸Gd isotopes, and 6 resonances from the ¹⁶⁰Gd isotope listed in ENDF/B-VII.0 have been discarded.

The resulting resonance parameters were used to calculate the capture resonance integral in the energy region from 0.5 eV to 20 MeV. The capture resonance integrals were compared to the resonance integrals obtained using the resonance parameters from ENDF/B-VII.0 and the previous RPI results. The present parameters gave a resonance integral value of 395 ± 2 b, which is $\sim 0.8\%$ higher and $\sim 1.7\%$ lower than that obtained with the ENDF/B-VII.0 parameters and with the previous RPI parameters, respectively.

ACKNOWLEDGMENTS

The authors express their sincere thanks to the staff of the Gaerttner Linear Accelerator Center at RPI for their excellent operation and their support during the experiment. This research partly was supported by the National Research Foundation of Korea (NRF) through a grant provided by the Korean Ministry of Science, ICT and Future Planning (MSIP) (NRF-2013R1A2A2A01067340), by the Institutional Activity Program of Korea Atomic Energy Research Institute, and by the National Research and Development Program through the Dong-Nam Institute of Radiological and Medical Sciences funded by MSIP (50491-2014).

REFERENCES

1. R. Q. WRIGHT, "Revised Evaluations for ENDF/B-VI Revision 2," *Trans. Am. Nucl. Soc.*, **68**, 468 (1993).

2. K. WISSHAK et al., "Stellar Neutron Capture Cross Sections of the Gd Isotopes," *Phys. Rev. C*, **52**, 2762 (1995); http://dx.doi.org/10.1103/PhysRevC.52.2762.

3. Y. NAKAJIMA et al., "Neutron Capture Cross-Section Measurements of 155 Gd and 157 Gd from 1.1 to 235 keV," *Ann. Nucl. Energy*, **16**, 589 (1989); http://dx.doi.org/10.1016/0306-4549(89)90013-3.

4. N. M. LARSON, "Updated Users' Guide for SAMMY: Multilevel R-Matrix Fits to Neutron Data Using Bayes' Equations," ORNL/TM-9179/R8, ENDF-364/R2, Oak Ridge National Laboratory (2008).

5. S. F. MUGHABGHAB and R. E. CHRIEN, "s-Wave Neutron Strength Functions of the Gd Isotopes," *Phys. Rev.*, **180**, 1131 (1969); http://dx.doi.org/10.1103/PhysRev.180.1131.

6. F. B. SIMPSON, "Neutron Resonance Parameters for Sm^{147} , Sm^{149} , Gd^{155} , and Gd^{157} ," *Bull. Am. Phys. Soc.*, **2**, 42 (NA7) (1957).

NUCLEAR SCIENCE AND ENGINEERING VOL. 180 MAY 2015

7. H. B. MØLLER, F. J. SHORE, and V. L. SAILOR, "Low-Energy Neutron Resonances in Erbium and Gadolinium," *Nucl. Sci. Eng.*, **8**, 183 (1960); http://dx.doi.org/10.13182/NSE60-1.

8. M. P. FRICKE et al., "Neutron Resonance Parameters and Radiative Capture Cross Section of Gd from 3 eV to 750 keV," *Nucl. Phys. A*, **146**, 337 (1970); http://dx.doi.org/10.1016/0375-9474(70)90729-3.

9. B. BARAMSAI, "Neutron Capture Reaction on Gadolinium Isotopes," PhD Thesis, North Carolina State University (2010).

10. F. RAHN et al., "Neutron Resonance Spectroscopy: ^{154,158,160}Gd," *Phys. Rev. C*, **10**, 1904 (1974); http://dx.doi.org/10.1103/PhysRevC.10.1904.

11. V. A. ANUFRIEV, S. I. BABICH, and S. M. MASYONOV, EXFOR/CINDA Database; www.nndc.bnl .gov, NNDC CINDA EXFOR Accession #40984 (1987) (current as of June 6, 2014).

12. R. L. MACKLIN, "Neutron Capture Resonances of ¹⁵²Gd and ¹⁵⁴Gd," *Nucl. Sci. Eng.*, **95**, 304 (1987); http://dx.doi.org/10.13182/NSE87-2.

13. F. N. BELYAEV et al., EXFOR/CINDA Database; www. nndc.bnl.gov, NNDC CINDA EXFOR Accession #41107 (1990) (current as of June 6, 2014).

14. E. N. KARZHAVINA, N. N. PHONG, and A. B. POPOV, EXFOR/CINDA Database; www.nndc.bnl.gov, NNDC CINDA EXFOR Accession #40162 (1968) (current as of June 6, 2014).

15. E. N. KARZHAVINA, K.-S. SU, and A. B. POPOV, EXFOR/CINDA Database; www.nndc.bnl.gov, NNDC CINDA EXFOR Accession #40405 (1973).

16. M. ASGHAR et al., "The Spins of Low-Energy Neutron Resonances of ¹⁵⁵Gd and ¹⁵⁷Gd," *Nucl. Phys. A*, **145**, 549 (1970); http://dx.doi.org/10.1016/0375-9474(70)90440-9.

17. G. LEINWEBER et al., "Neutron Capture and Total Cross-Section Measurements and Resonance Parameters of Gadolinium," *Nucl. Sci. Eng.*, **154**, 261 (2006); http://dx.doi.org/10.13182/NSE05-64.

18. R. W. HOCKENBURY et al., "Neutron Radiative Capture in Na, Al, Fe, and Ni from 1 to 200 keV," *Phys. Rev.*, **178**, *4*, 1746 (1969); http://dx.doi.org/10.1103/PhysRev.178.1746.

19. M. E. OVERBERG et al., "Photoneutron Target Development for the RPI Linear Accelerator," *Nucl. Instrum. Methods Phys. Res., Sect. A*, **438**, 253 (1999); http://dx.doi.org/10.1016/S0168-9002(99)00878-5.

20. R. E. SLOVACEK et al., "Neutron Cross-Section Measurements at the Rensselaer LINAC," *Proc. Topl. Mtg. Advances in Reactor Physics*, Knoxville, Tennessee, April 11–15, 1994, Vol. II, p. 193, American Nuclear Society (1994).

21. R. C. BLOCK et al., "A Multiplicity Detector for Accurate Low-Energy Neutron Capture Measurements," *Proc. Int. Conf. Nuclear Data for Science and Technology*, Mito, Japan, May 30–June 3, 1998, p. 383 (1998).

22. R. C. BLOCK et al., "Neutron Time-of-Flight Measurements at the Rensselaer LINAC," *Proc. Int. Conf. Nuclear Data for Science and Technology*, Gatlinburg, Tennessee, May 9–13, 1994, Vol. 1, p. 81, American Nuclear Society (1994).

23. G. LEINWEBER et al., "Resonance Parameters and Uncertainties Derived from Epithermal Neutron Capture and Transmission Measurements of Natural Molybdenum," *Nucl. Sci. Eng.*, **164**, 287 (2010); http://dx.doi.org/10.13182/ NSE08-76.

24. E. M. BAUM et al., "Chart of the Nuclides," 17th ed., Knolls Atomic Power Laboratory (2009).

25. D. P. BARRY, "Neodymium Neutron Transmission and Capture Measurements and Development of a New Transmission Detector," PhD Thesis, Rensselaer Polytechnic Institute (2003). 26. M. B. CHADWICK et al., "ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Science and Technology," *Nucl. Data Sheets*, **107**, 2931 (2006); http://dx.doi.org/10.1016/j.nds.2006.11.001.

27. R. E. MacFARLANE and D. W. MUIR, "The NJOY Nuclear Data Processing System Version 91," LA-12740-M, Los Alamos National Laboratory (1994).

28. C. L. DUNFORD, "ENDF Utility Codes Release 7.01/02," USCD1212/07, International Atomic Energy Agency (Apr. 27, 2005).

29. M. B. CHADWICK et al., "ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data," *Nucl. Data Sheets*, **112**, *12*, 2887 (2011); http://dx.doi.org/10.1016/j.nds.2011.11.002.

30. G. LEINWEBER et al., "Neutron Capture and Transmission Measurements and Resonance Parameter Analysis of Gadolinium," OSTI Report No. LM-05K107, U.S. Department of Energy Office of Scientific and Technical Information (2005).