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Thermal neutron scattering evaluation framework
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Abstract. A neutron scattering kernel data evaluation framework for computation of model-dependent
predictions and their uncertainties is outlined. In this framework, model parameters are fitted to double-
differential cross section measurements and their uncertainties. For convenience, the initial implementation
of this framework uses the molecular dynamics model implemented in the GROMACS code. It is applied to
light water using the TIP4P/2005f interaction model. These trajectories computed by GROMACS are then
processed using nMOLDYN to compute the density of states, which is then used to calculate the scattering
kernel using the Gaussian approximation. Double differential cross sections computed from the scattering
kernel are then fitted to double-differential scattering data measured at the Spallation Neutron Source detector
at Oak Ridge National Laboratory. The fitting procedure is designed to yield optimized model-parameters
and their uncertainties in the form of a covariance matrix, from which new evaluations of thermal neutron
scattering kernel will be generated. The Unified Monte Carlo method will be used to fit the simulation data to
the experimental data.

1. Introduction
With the rise in interest of GEN-IV reactor systems,
specifically very high temperature and molten salt
reactors, there has been a need for newer, more accurate
thermal scattering nuclear data. In addition to GEN-IV
reactors, current light water reactors that are applying for
license extensions need high fidelity cross sections and
uncertainties to better quantify whether they can operate
safely for another 20 years. In addition, thermal moderator
data plays a key role in nuclear criticality safety analyses.
Currently, there are very limited thermal moderator data
for materials that are of interest to nuclear criticality safety
(e.g., lucite, paraffin, hydrofluoric acid, etc.). The lack
of uncertainties or covariance data for thermal scattering
material means there is no way of quantifying the effects
of thermal scattering uncertainties in quantities of interest
in reactor systems.

The framework outlined here aims to alleviate these
issues by providing a generalized method to generate
thermal double differential scattering cross sections and
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their respective uncertainties and covariances from model
parameters. This is done by fitting the computer simulated
scattering data against experimental data using the Unified
Monte Carlo (UMC) method, which had previously only
been used on fast spectrum data. This method will be
independent of how the simulations are run (classical
molecular dynamics, ab-initio, quantum mechanics, etc.),
and how the structure factor is generated, which currently
does not exist. These new cross sections will then be
validated against experimental benchmarks as well as other
experimentally gathered data.

2. Double differential cross section
Neutron cross sections can be categorized into three energy
regions: thermal, epithermal, and fast. In the epithermal
and fast energy regions, the neutron is energetic enough to
render the vibrational energy of the target nucleus as well
as the binding energies of a target molecular or crystalline
structure as negligible. In the thermal region, however,
the neutron energy is comparable to these vibrational and
binding energies, meaning they have to be taken into
account when considering what the neutron cross section
is at these energies.

Thermal scattering cross sections can be divided
into two components: coherent scattering and incoherent
scattering. Coherent scattering occurs when neutrons
scatter with different nuclei and their wavefunctions
constructively interfere with one another. It is more
prevalent in solids, such as graphite, and materials with
a crystalline lattice structure, though any material with
a non-negligible coherent cross section may exhibit
significant coherent scattering. Incoherent scattering
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occurs when there is no interference between scattering
neutron wavefunctions and is more noticeable in liquids
and hydrogenous materials like water.

The double differential cross section in the thermal
energy region is calculated from the scattering law, as
shown in [1], which is calculated from the intermediate
structure factor. Traditionally, the intermediate structure
factor has been calculated one of two ways: the Van Hove
Theory (VHT), as shown below,
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where ρ(ω) is the density of states, R̂α(t) is the quantum
mechanical position operator of particle α at time t , and bα

is the scattering length of particle α.
The VHT (Eqs. (1) & (2)) states that the intermediate

structure factor is represented by a quantum thermal
average of the position of the atoms. The time dependence
of the position operator is defined by the Heisenberg
picture of quantum mechanics. The first term in Eq. (2)
accounts for the coherent scattering, while the second
term accounts for incoherent scattering. In the classical
framework, the position operator is replaced by the time-
dependent position vector of the particles, more commonly
known as the trajectories of the particles, and the quantum
thermal averages are replaced by classical ensemble
averages. Recent work using the VHT has been done by
the NAUSICAA collaboration [2].

The Gaussian approximation (Eq. (3)) assumes that the
scattering occurs in a medium with isotropic scattering.
With this assumption, the intermediate structure factor is
represented by a Gaussian as a function of the density of
states (also known as the frequency spectrum). This is the
more widely used method and is currently used by NJOY
to calculate scattering data for MCNP [3].

The VHT can clearly be used to calculate both
coherent and incoherent scattering, while the Gaussian
approximation (in its current formalism) can only be
applied to incoherent scattering. There are methods for
approximating the coherent component in systems, such as
the Vineyard and Sköld approximation [4]. The drawback
to the VHT is that, by viewing it in the classical framework,
the probabilities are equal for up-scattering and down-
scattering, which is non-physical. There are several semi-
classical approximations that can be applied, such as
the Harmonic, Schofield, Schofield-Harmonic, and the
“Standard” approximations [5].

3. Unified Monte Carlo
The UMC approach is based on Bayes Theorem and the
Principle of Maximum Entropy [6] and was first proposed

by Smith [7]. There are currently two approaches that,
while they both have a similar underlying mathematical
formalism, differ slightly in their application: UMC-G and
UMC-B [8].

3.1. UMC-G

If yE is the experimental dataset containing m values, VE

is the experimental covariance matrix, xC is the computed
dataset containing n values, and VC is the computed
covariance matrix, then Bayes Theorem states that

p(x) = N L(yE , VE |x)po(x|xC , VC ), (4)

where p(x) is the posterior probability density function
(PDF), po is the prior PDF, and L is the likelihood PDF.
The normalization constant N is included to ensure that
the posterior PDF integrates to unity. In this framework, yE

would be the measured double differential cross section,
and VE would be its associated covariance. The vector
x contains m random variables, and are arguments of the
posterior PDF p. The mean value of this random variable
vector x, weighted by the posterior PDF, and its associated
covariance matrix are defined as

〈xi 〉 =
∫

xi p(x)dx, (5)
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Using the Principle of Maximum Entropy, the optimal
choice for the PDF is a multivariate Gaussian function,
which leads to Eq. (4) being recast as
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In this framework, yE is the measured double differential
cross section, and xC is the calculated dynamic structure
factor. The variable y is therefore defined as y = f(x),
where f contains n scalar functions, each of whose
variables are one or more of the elements of the random
variable x. With this in mind, the integrals of Eqs. (5) and
(6) can be rewritten as

〈xi 〉 = lim
K→∞

∑K
k=1 xik p(xk)∑K

k=1 p(xk)
, (8)

(V)i, j = lim
K→∞

∑K
k=1 xik x jk p(xk)∑K

k=1 p(xk)
− 〈xi 〉〈x j 〉. (9)

From here, the random variable xk is sampled using a
Monte Carlo sampling scheme including a brute force
method, or a Metropolis algorithm.

3.2. UMC-B

The UMC-B formulation, like UMC-G, is founded on the
ideals of Bayes Theorem and the Principle of Maximum
Entropy. Unlike in UMC-G, however, the mean values of
the simulation data xC and VC are not calculated. Rather,
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Figure 1. Double differential scattering cross section for light water at 250 meV at 25◦ and 600 meV at 10◦.

a collection of scalar weighting values ωk are calculated
where, for each simulation k,

ωk = exp

{
−1

2

[
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]}
. (10)

As in the UMC-G case, yk = f(xCk), where xCk is
calculated using model parameters sampled using the same
prior distribution as in UMC-G. The information of the
prior and likelihood functions are combined into one
function, like in the UMC-G case.

The weighting value ωk is a measure of the deviation
between the experimental data yE from the simulation
data yk for the kth simulation history. Once the simulation
values yk and ωk are calculated, the mean values x and
covariance matrix V can be calculated using

〈xi 〉 = lim
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k=1 xikωk∑K

k=1 ωk

, (11)
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− 〈xi 〉〈x j 〉. (12)

One advantage of UMC-B over UMC-G is that the
covariance matrix of the simulation data VC does not
need to be calculated or inverted. This is advantageous
to its applicability to thermal scattering data, as S(α, β)
scattering laws have been as large as [287 × 187], which
would lead to a VC of size [53669 × 53669]. One
significant downside of UMC-B, however, is that there
is no apparent way to “speed up” the Monte Carlo
sampling as one can do in UMC-G by using the Metropolis
algorithm [7].

4. Preliminary results
To prove the validity of this framework, it is being tested
out on light water. Experimental data were collected from

the ORNL Spallation Neutron Source (SNS) at 55, 160,
250, 600, 1000, 3000, & 5000 meV between 3◦ and
58◦ with 1◦ increments. A system of 343 light water
molecules were modeled in the molecular dynamics (MD)
code GROMACS [9]. The molecules were parameterized
using the TIP4P/2005f interaction potential [10]. The
simulation was then run for 100 ps with a timestep of
0.1 fs at constant volume and temperature. This leads to
a �E of 0.05 meV and an Emax of 10 meV. Trajectories
from the GROMACS run were then post-processed using
nMOLDYN [11] to generate density of states. These
density of states are then used to calculate the intermediate
structure factor. Due to the need for energies above 50
meV, the Gaussian approximation is used to calculate the
intermediate structure factor. It is then convoluted with the
SNS detector resolution function so it can be compared to
the experimental data.

A plot of the double differential cross section with the
detector resolution function applied is shown in Fig. 1.
As a comparison, the SNS data is plotted alongside the
simulation data along with MCNP simulations designed to
replicate the SNS measurements run with three different
cross section sets: the cross sections found in ENDF7
[12], the cross sections from the CAB model [13], and
the simulation cross sections which were processed by
NJOY using the simulated density of states and read into
MCNP. Specifically, the density of states was processed
by NJOY in the same manner that was used to process
the ENDF/B-VII thermal scattering cross section. In the
MCNP runs, a Gaussian distribution of the source particles
is assumed, which is slightly less accurate than the true
SNS simulation but is a sufficient approximation. It is
worth noting that, since these are preliminary results, no
UMC calculation has been carried out, and as such, there
are no uncertainties of the double differential cross section
to plot. Additionally, a plot of the total cross section is
shown in Fig. 2. The total scattering cross section agrees
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Figure 2. Total neutron scattering cross section for light water.

very favorably with both the ENDF/B-VII data as well
as the EXFOR data [14], and actually has an improved
agreement with the EXFOR data between 0.1–1 meV.

5. Conclusion & future work
A framework for generating thermal scattering cross
sections and their covariances is laid out. While
experimental data are not required, its inclusion will
greatly improve the accuracy of the framework results.
There is still a great deal of work to be done before this
task is completed. The exact specifications of the MD
simulation have not be finalized yet, meaning UMC has not
been applied to generate the new dataset. The framework,
which aims to fit simulation data and experimental data
using the Unified Monte Carlo method, will be applied to
light water.

There may be ways to improve upon the VHT, such that
it could extend more formally to the quantum framework
instead of being limited to the classical framework. Such
an improvement could yield more accurate results than
the Gaussian approximation. There has been a recent
attempt to combine the Gaussian approximation with the
VHT [15], which could be expanded to include coherent
contributions. There currently does not exist a method
to propagate thermal scattering covariance data through
neutron transport codes. This is most likely due to the
current lack of thermal scattering covariance data, but such
functionality would encourage the community to look into
other innovative methods for generating thermal scattering
covariance data. In addition, the framework can, in theory,
be applied to any material, and it is will be applied to other
thermal materials for reactor applications, such as graphite,
lucite, or teflon.
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