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Abstract. R-matrix formalism is extended beyond compound nuclear (CN) resonant reactions to include param-
eterization of direct as well as doorway processes. Direct processes in the R-matrix exterior are parameterized
by a unitary matrix that introduces mixing among wave function coefficients of the incoming and outgoing
wave function components at the R-matrix channel surface. Doorway processes are parameterized by separat-
ing the Hilbert space of the interior R-matrix region into its doorway and CN subspaces, from which doorway
state eigenenergies, reduced width amplitudes, and the strengths of their coupling to CN levels appear as new
R-matrix parameters. Parameterization of generalized as well as the conventional Reich–Moore approximation
for eliminated capture channels in the presence of direct, doorway, and CN processes is presented along with a
complex-valued scattering length with contributions from direct, doorway, and CN capture processes. Deriva-
tion of Brune’s alternative R-matrix parameters is extended to include doorway states. This work suggests how
R-matrix formalism could be extended further by adopting the concepts from related reaction formalisms.

1 Introduction

A phenomenological R-matrix formalism reviewed by
Lane and Thomas [1] has been used for evaluations of
neutron cross sections [2, 3] in the resolved resonance re-
gion (RRR) compiled in the US Evaluated Nuclear Data
File [4]. Inspired by formal expressions for the transition
matrix accounting for direct, doorway, and compound nu-
clear (CN) processes in both the transition (T -)matrix for-
malism [5, 6] and the reactance (K-)matrix formalism [7],
we introduce a corresponding parameterization of direct,
doorway, and CN processes into a phenomenological R-
matrix formalism. Because the R-matrix reaction channels
include particle and radiative capture channels, these for-
mal extensions enable R-matrix parameterization of three
kinds of capture1 processes: direct, semidirect (via giant
dipole resonances playing the role of doorways [10–12]),
and CN capture processes, thus enabling quantum me-
chanical interference among them. These extensions also
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1This is true for the various forms of the Reich–Moore approximation
(RMA) [1, 8, 9] for eliminated capture channels described in Section 4.

enable R-matrix doorway treatment of isobar analogue res-
onances (IARs) whose presence modulates neutron CN
resonance widths [13] and capture cross sections [14].

Several expressions from the conventional phe-
nomenological R-matrix formalism of [1] are stated using
bold font in matrix notation to facilitate the presentation
of its formal extensions. A conventional expression for
the scattering matrix in a phenomenological R-matrix for-
malism of CN processes presented by Lane and Thomas
in [1] is

U = ΩWΩ, (1)

where Ω ≡ e−iφ(ρ) is defined by a diagonal hard-sphere
scattering phase shift matrix, φ(ρ), where ρ ≡ ak; a is a
diagonal matrix of channel hard-sphere radii; k is a diag-
onal matrix of channel momentum wave numbers corre-
sponding to a total energy, E, in the center-of-mass frame;
and the collision matrix, W, is

W = P
1
2 [1 − R(L − B)]−1[1 − R(L∗ − B)] P−

1
2 , (2)

where L and L∗ are diagonal matrices of logarithmic
derivatives of (energy-dependent) outgoing (O) and in-
coming (I) channel wave functions, respectively; L is di-
vided into its real and imaginary component, L ≡ S + iP,
L∗ = S − iP, that is, the shift function, S, and the pen-
etrability, P, respectively; and B is a diagonal matrix of
arbitrary real-valued boundary condition constants. Di-
mensions of all of the matrices above are (Nc ×Nc), where
Nc = Np + Nγ is the total number of channels, and Np and
Nγ are the number of particle and radiative capture chan-
nels, respectively. For later convenience, the R-matrix is
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expressed as

R = γᵀQ γ, (3)
Q−1 = e − E1, (4)

where e is a (Nλ × Nλ) diagonal matrix of CN level ener-
gies, γ is a (Nλ × Nc) matrix of resonance reduced width
amplitudes (RWAs), Nλ is the number of CN levels, and
the elements of e and γ are real parameters independent of
energy, E. The collision matrix, W, in Eq. (2) can also be
expressed as

W = 1 + 2 i P
1
2 γᵀAγ P

1
2 , (5)

where A is a (Nλ ×Nλ) level matrix expressed2 in terms of
the R-matrix parameters as

A−1 = Q−1 − γ (L − B) γᵀ. (6)

Direct processes are introduced into R-matrix formal-
ism in Section 2, doorway processes in Section 3, RMA of
eliminated capture channels in the presence of direct and
doorway process in Section 4, and the extension of Brune
transform to doorway states in Section 5. Further exten-
sions of R-matrix formalism enabled by these results are
outlined in the conclusion.

2 Direct Processes in R-matrix Formalism

Direct reaction channel coupling in the R-matrix exterior
suggested by Wigner [15] can be parameterized by a uni-
tary matrix, M−1 = M† ≡ (M∗)ᵀ, that mixes the coef-
ficients of the incoming, y, and outgoing, x, asymptotic
channel wave function, Ψ = Iy + Ox, at the R-matrix sur-
face as

y←M y and x←M∗ x. (7)

Substituting these into the R-matrix expression defining
the scattering matrix, x = −U y, yields M∗x = −UM y;
multiplying both sides by Mᵀ yields a unitary and sym-
metric3 scattering matrix modified for direct processes as

UM = MᵀUM, (8)

where U in Eq. (8) retains the form given by Eqs. (1–4).
A slow energy variation of matrix elements ofM over

the energy scale on the order of optical potential single-
particle resonance width—that is, 1 MeV—may be ex-
pected, suggesting that direct processes in the R-matrix
interior could be parameterized by adapting the method
of Section 3. An optimal form of parameterization could
depend on the nature of a nuclear reaction. For example,
unitaryM can be parameterized by a Hermitian matrix χ
viaM = exp[−iχ]. Similarly, an orthonormal4 matrix may
be parameterized by a skew-symmetric χ asM = exp[χ].

Consistent R-matrix parameterization of direct pro-
cesses introduced in this section and of doorway and CN

2The fact that the expression in Eq. (6) holds for any real symmetric
matrix e is used in the generalized RMA in Section 4 and for alternative
R-matrix parameterization in Section 5.

3See Section VI.2.a,b of [1] for more information.
4It is an R-matrix analogue for the orthonormal matrix (computed via

distorted wave approx.) in Eq. (III.2.26) of [5] in T -matrix formalism.

processes in the next section enable a seamless quantum
mechanical formalism for interference5 among the three
classes of processes in all channels, as illustrated by an
expression for the scattering length in Section 4.

3 Doorway States in R-matrix Formalism

A simple way to infer parameterization of doorway and
CN processes in a phenomenological R-matrix is to cast
the R-matrix resonance RWAs and energies in Eqs. (3) and
(4), respectively, into an equivalent operator form as

γ = 〈λ | c〉, (9)
e = 〈λ |H0 |λ〉, (10)

respectively, where | c〉 and |λ〉 are the eigenvectors of
(channel radius sphere) surface and interior states, respec-
tively, and H0 is a Hamiltonian of the interior [5].

The interior Hilbert space, |λ〉, is to be delineated into
a subspace of compound nuclear states, |q〉, and a sub-
space of doorway states, |d〉, orthogonal to it, 〈d |⊗|q〉 = 0.
This can be achieved by making a formal substitution6,

〈λ | ←

(
〈d |
〈q |

)
, (11)

in Eqs. (9) and (10) to obtain the following generalizations
of γ and e for use in Eq. (3) and Eq. (4), respectively7:

γ←

(
γd

γq

)
, where (12)

γd ≡ 〈d | c〉 and γq ≡ 〈q | c〉 (13)

are the RWA matrices of doorway and CN states, respec-
tively, and

e←
(
ed u
uᵀ eq

)
, 1←

(
1d 0
0ᵀ 1q

)
, (14)

where8

u ≡ 〈d |H |q〉, ed ≡ 〈d |H |d〉, eq ≡ 〈q |H |q〉, (15)

are a doorway–CN level coupling strength matrix, fol-
lowed by diagonal matrices of doorway and CN level en-
ergies, respectively. Although ed and eq are diagonal, a
(2 × 2) block matrix e is not because of the non-vanishing
off-diagonal blocks u and uᵀ. The R- and A-matrix in
Eqs. (3) and (6), respectively, attain a 2 × 2 block matrix
structure due to Eqs. (12, 14). All matrix elements of e (in-
cluding those of its constituent u) and γ remain real-valued
and independent of energy, E.

A projection of the R-matrix interior Hilbert space by
Eq. (11) was inspired by Feshbach’s projector operator for-
malism [5], and it turns out to be particularly simple be-
cause it is applied to a denominator9 of the Q-matrix, in-
stead of the R-matrix, that is, the Green’s function [6, 7].

5This interference may be constructive or destructive.
6The choice of the letters “d” and “q” to label doorway and compound

level subspaces is borrowed from [5–7].
7Matrix subscripts (d, q, ...) serve as labels rather than indices.
8A two-nucleon component of a nuclear Hamiltonian can induce a

chain of linked subspaces of increasing number of particle-holes [16].
9More specifically, the matrix e inside the denominator.
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4 Approximations for Capture Channels
Approximations of R-matrix total capture cross section in
the presence of direct, doorway, and CN processes must
be performed simultaneously for all three classes of pro-
cesses. Formal elimination of capture channels starts with
doorway and CN processes, followed by a corresponding
elimination of direct processes.

Application of generalized RMA (GRMA) [9] to the
last term of a (2 × 2) block-level matrix in Eq. (6) reduces
the total number of channels, Nc = Np + Nγ—where Np

and Nγ are the number of particle and radiative capture
channels, respectively—to NGRMA = Np + Nλ, where Nλ is
a total number of levels, including doorway and CN levels,
namely, Nλ = Nq+Nd. Since the expressions derived in [9]
hold for any symmetric matrix e, including the one defined
by Eq. (14), a matrix of GRMA RWAs for the Nλ surrogate
capture channels is

g2
γ = γᵀγ P1/2

γ P1/2
γ γγ, (16)

where gγ is a Nλ × Nλ symmetric matrix10 of GRMA sur-
rogate RWAs [9], and γγ is the original, presumably com-
plete, (Nγ × Nλ) matrix of RWAs.

This reduction in number of capture channels entails a
corresponding reduction for direct processes, governed by

gγmγ = γᵀγ P1/2
γ Mγ, (17)

where Mγ is a (Nγ × Np) off-diagonal block matrix in a
(Nc × Nc) direct reaction matrixM, to be replaced by mγ,
a (Nλ × Np) matrix. This reduced set of surrogate cap-
ture channel parameters, (gγ,mγ), can reproduce a total
capture cross section computed using a complete parame-
ter set, (γγ,Mγ). When a complete set of capture RWAs
is not known, one may simply perform evaluation using
a surrogate set, (gγ,mγ). The GRMA parameters remain
real-valued, and the corresponding scattering matrix there-
fore remains unitary. The Brune transform developed in
Section 5 can be applied directly to the GRMA parameter-
ization [9].

Conventional RMA sets to zero all off-diagonal ele-
ments (presumed to be small11) of gγ to yield

e(RMA) = e − i · diag(g2
γ). (18)

A corresponding RMA for eliminated DC can be stated via
a skew-symmetric matrix χ corresponding to the orthonor-
mal matrixM = exp(χ). For example, for a single s-wave
elastic channel12 in the limit k0 → 0, the loss of incoming
flux due to DC can be parameterized13 by ε0 > 0 as

χ0(RMA) = −ε0φ0(ρ0) = −ε0a0k0, (19)

to yield an expression for a free scattering length14 as

a(RMA) ≡ lim
k0→0

1
2ik0

(1 − UM0) ≈ a0[1 − γᵀ0 e−1
(RMA)γ0 − iε0],

(20)
10Its (2 × 2) block structure in Eq. (12) remains.
11Asymptotically true when assuming randomly distributed signs of

capture RWAs, γγ, and direct capture (DC) amplitudes,Mγ, and Nγ � 1.
12Labeled as subscript 0, e.g., a0 is its R-matrix channel radius.
13A total capture cross section is then proportional to a deviation of

the scattering matrix from unitarity [2].
14The off-diagonal elements of g2

γ may be kept in Eq. (18), as in [1].

where −ia0ε0 is a DC contribution to the imaginary part of
the scattering length15, which parameterizes capture cross
section in the thermal neutron region as −4π=[a(RMA)]/k0.
Its absolute value parameterizes a corresponding scat-
tering cross section in the center of mass frame as
4π|a(RMA)|

2. The expression for a free scattering length
in Eq (20), being related to the bound scattering lengths
used in thermal neutron scattering (TNS) evaluations [17],
could be used to correlate presently uncorrelated TNS and
RRR evaluations.

5 Alternative R-matrix for Doorways

The Brune transform of conventional (real-valued) R-
matrix resonance parameters to alternative R-matrix pa-
rameters [18] is extended to include the doorway states
introduced into R-matrix formalism in Section 3. Brune
transform may be performed on doorway and CN sub-
spaces independently to yield alternative parameter sets
for each subspace: (ẽd, γ̃d) and (ẽq, γ̃q), respectively. To
complete the Brune transform in the presence of doorway
states, it remains to transform the doorway–CN level cou-
pling matrix, u, in Eq. (15), which is the off-diagonal block
matrix of the (2 × 2) block matrix e given by Eq. (14).
This is achieved by generalizing the matrices defined in
the Brune [18] derivation, namely, E, M, N, Ã, and Q̃,
which become (2 × 2) block matrices due to the introduc-
tion of the doorway subspace. The matrix, E, introduced
by Brune becomes implicitly generalized into a (2 × 2)
block matrix, namely,

E = e − γ (S − B) γᵀ, (21)

by virtue of γ and e having already been redefined as (2×1)
and (2 × 2) block matrices in Eqs. (12) and (14), respec-
tively. A generalization of Brune’s eigenvector matrix for
a projected Hilbert space is a 2 × 2 block-diagonal matrix

a = ad ⊗ aq =

(
ad 0
0ᵀ aq

)
, (22)

where aq (ad) is the eigenvector matrix introduced by
Brune [18] of the CN (doorway) subspace. The length of
each eigenvector in a is (Nd + Nq). The product space of
eigenvectors in Eq. (22) may be used to succinctly define
the alternative RWAs as

γ̃ = aγ =

(
γ̃d

γ̃q

)
=

(
adγd

aqγq

)
. (23)

The eigenvector overlap matrix, M, is extended via
Eq. (22) as

M = aᵀa =

(
Md 0
0ᵀ Mq

)
, (24)

and

N = aᵀea =

(
Nd Nv

Nᵀv Nq

)
, (25)

where M{d,q} and N{d,q} retain the form derived in [18], and

Nv ≡ ũ + γ̃d(S̄ − B)γ̃ᵀq , (26)

15Doorway states and CN levels contribute via e(RMA).
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where
ũ = adua

ᵀ
q , (27)

and the (i, j) matrix element of S̄ is

[S̄]i j ≡
S([ẽd]ii) + S([ẽq] j j)

2
. (28)

The Brune transform of the level matrix in Eq. (6) yields

Ã−1 = aᵀA−1a (29)
= N − E M − γ̃(L − B)γ̃ᵀ (30)
= Q̃−1 − iγ̃Pγ̃ᵀ (31)

which can be solved for Q̃−1 using Eqs. (30, 31, 24-28) to
yield

Q̃−1 =

(
[Q̃−1]d [Q̃−1]v
[Q̃−1]ᵀv [Q̃−1]q

)
, (32)

where [Q̃−1]d and [Q̃−1]q correspond to Q̃−1(E) of [18]
for parameter sets (ẽd, γ̃d) and (ẽq, γ̃q), respectively, and
where

[Q̃−1]v = ũ − γ̃d[S(E) − S̄]γ̃ᵀq . (33)

Brune’s alternative R-matrix, namely, R̃ = γ̃ᵀQ̃γ̃, can be
used to express the collision matrix W in Eq. (2) as

W = [1 − iP
1
2 R̃P

1
2 ]−1[1 + iP

1
2 R̃P

1
2 ], (34)

suggesting that P 1
2 R̃P 1

2 corresponds to a K-matrix; in fact,
a formal structure of its (2×2) block components (obtained
by formally inverting a (2×2) block matrix Q̃−1 in Eq. (32)
(using expressions in [19]) is analogous to the (2×2) block
components of a K-matrix derived using projection oper-
ator formalism in [6]. A notion that this correspondence
could be established led to a transparent R-matrix parame-
terization of doorway processes in Section 3.

6 Summary and Outlook

Direct and doorway processes have been seamlessly pa-
rameterized in a phenomenological R-matrix formalism,
including a corresponding RMA and the Brune transform.
It is hoped that incorporating these processes into R-matrix
nuclear data evaluation codes such as SAMMY [2, 3] will
yield improved evaluations for nuclear applications.

Introduction of doorway processes into the R-matrix
suggests that further subdivisions of the interior R-matrix
Hilbert space could yield an R-matrix analog of the
Feshbach–Kerman–Koonin theory of multistep compound
nuclear reactions [16, 20]; each subspace induced by a
particle-hole pair (2p1h, 3p2h, ...) would entail a row and
column block into a block matrix e in Eq. (14). A corre-
sponding scattering matrix could be computed without any
approximations because the formal complexity has been
contained inside the computation of a matrix inverse of a
block-matrix (e−E1) that can be performed by computers.

Addition of direct and doorway processes into a CN
formalism enables a relaxation of the assumptions inherent
to applications of random matrix theory in nuclear physics
[21, 22], and it may be useful for advancing statistical
methods in the R-matrix formalism for the unresolved res-
onance region, where fluctuations suggestive of interme-
diate structure induced by doorway states are seen [5, 13].
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