"Least Squares Fitting" Using Artificial Neural Networks

YARON DANON and MARK J. EMBRECHTS
Department of Nuclear Engineering & Engineering Physics,
Rensselaer Polytechnic Institute, Troy, NY 12180-3590

INTRODUCTION

When feedforward backpropagation neural nets are used with continuous
numbers (X) in the input layer and continuous numbers (¥Y) in the
output layer, the trained neural net can be viewed as a function that
fits the (X,Y) data. The learning algorithm minimizes the sum of
the squares of the differences between the output of the network and
the given data points:

Pmax Xmax P_.P 2
error = Y (ok—-tk) ’ (1)
P k
where oi and ti are the output value and training pattern value of

the neural net for pattern p and output neuron k.

This process has a similar minimization objective to that used in
the well known least squares fitting method (LSF), where we normally
would have k = 1 for the least squares curve fit. The difference
between fitting data points with a neural net and fitting with the
LSF technique is that with a neural net the fitted function is
represented by the network and does not have to be explicitly defined
as in the LSF method. The learning process changes the internal
parameters (weights) of the network such that the neural net can
represent the given set of points in the best way by minimizing the
error function.

In this paper the results from a backpropagation fit to various
continuous functions will be presented, showing properties of neural
network fitted functions. This technique is then used to fit the
neutron time dependent background for neutron time of flight cross
section measurements, where the theoretical shape of the curve is
unknown. The distinct advantages of using a neural net over the LSF
method will be discussed for this application.

NETWORK SIZE AND TFITTING QUALITY

When training a feedforward net with error propagation for curve-
fitting purposes, it is generally desirable to keep the number of
neurons in the hidden layer(s) as small as possible, while still
maintaining a relatively small value for the error after training
(e.g. see Sietsma and Dow [1991)). To illustrate the effect of the
size of the network on the quality of a curve-fit we will try to
approximate the function

Y(X) = %e‘°-8x + noise, (2)

with a neural net and compare the results with the LSF method. The
first step was to generate a set of 11 data points from this equation
with up #20% white noise. A small data base (11 points) was chosen
for this example in order to clearly illustrate the effect of the

network size on the quality of the curve fit. Various nets were
trained (Table I), and training was halted when the error would no
longer decrease. The momentum parameter was initially set to 0.79

and increased to 0.9 during the learning stage, while the learning

877

878

parameter was initially set to 0.3 and increased to 0.8 at the last
stages of the learning process. The training started with 1% noise
on the input data and the noise was gradually reduced to 0%.

TABLE I. Error after training for a data set generated by Eq. (2) as
a function of the network architecture

Net size Number of weights RMS Error
1-1 2 0.0006406
1-2-1 7 0.0004706
1-2-1 10 0.0000456
1-3-3-1 22 0.0000433
1-10-1 31 0.0000000
1-10-10-1 46 0.0000000

From the results of this experiment (Table I) it can be noticed
that the error after training can be reduced to zero by increasing
the size of the network. The first network (no hidden layer, but
with bias node) has two degrees of freedom. This is the same number
of degrees of freedom as an exponential least squares fitting method,
but the interpolation performance of the neural net (line with short
dashes in Fig. 1) is clearly inferior to LSF (solid line in Fig. 1).
The feedforward neural network architectures of Table I have between
2 to 46 degrees of freedom. When the number of weights is between 22
and 31, a zero error can be obtained after training, but the network
just memorizes the data set and shows a poor interpolation capability
(Fig. 1). The objective of training a neural net for curve fitting
is certainly not to achieve a zero error after training. As a matter
of fact, the networks with poor generalization after training to zero
error would show a better performance if the training were halted
after a certain finite error.

Deciding which exactly is the best curve fit is in part arbitrary,
and depends on the criterion one wants to accept as a "best fit"™.
Reasonable approximations can be generated with standard LSF
techniques, but keep in mind here that an exponential shape for the
curve fit was an a priori assumption. The neural network approaches
can provide acceptable curve fits without any a priori assumptions
regarding the shape of the function. However, a different network
architectures yield very different curve fits. If just a few test
data are available it is hard to obtain good statistics for the
performance of a trained net from test data that were held back
during the training process. Deciding on the right network
architecture for an acceptable curve fit (or deciding when to stop
training to prevent overtraining for the larger networks) remains an
art in that case.

From the curves in Fig. 1 the network with zero error (1-10-1)
gives the poorest results, as indicated by the oscillating nature of
the approximation. The networks which still resulted in a finite
error after training provided a better approximation, but there are
still large discrepancies for 1.5 < X < 3,0. This can partially be
attributed to the fact that it is not such a simple matter to

describe an exponential function by sigmoid functions.

When fitting with the least squares method the "goodness™ of the

fit is normally taken as the "chi-square” value. For LSF this is
given by

fe(x:)-u] 3)

8719

where f£(Xj) is the fitting function, and Yj are the given data
points. Obviously, when fitting data with a neural network,
minimizing Eq. [3] would not be the objective anymore. As
illustrated in Table I and Fig. 1, the larger networks can be
(over) trained to make xz equal to zero, but generalization is rather
poor in that case.

PRESENTING DATA TO A NEURAL NET

In a feedforward neural net several inputs are summed, a transfer
function operation is performed, and the neuron provides just one
output value. A typical transfer function is the sigmoid function

1
£(X) = 4
x) = =5 (4)

The sigmoid function is bounded between zero and unity, and the same
bounds apply for the output value of the neural net if a sigmoid
function is used for the output neurons. Neural nets use bias nodes
that connect to each neuron. The weights associated with the Dbias
connections are obtained by the training process just as the regular
weights. The effect of the bias is to shift the transfer function
along the X-axis, as shown in Fig. 2. This shift will make the
transfer function perform efficiently over a larger range of input
values for a particular neuron by changing the threshold value for a
particular learning process.

A different parameter that can be tweaked during the learning
process is the temperature. A sigmoid with a temperature has a
transfer function given by

1
£X,T) = — 77 - (5)
! l+e X/T
The actual effect of varying the temperature, T, is to change the
slope of the transfer function as shown in Figure 3. The use of a
low temperature can bring the shape of the sigmoid function to a
signum function. The use of a high temperature (especially in the

last layer of the network) allows the inputs to receive higher
weights without sending the output immediately into saturation (zero
or unity).

The independent variable, X, of the sigmoid function can exceed
unity. This excess cannot be too large however, because large values
in the exponent will normally cause an overflow error. These
limitations on the size of the input and output variables of the
artificial neural network require preprocessing of the data (see e.g.
Thibault [1991]). Often taking the logarithm of large input or
output variables and/or a normalization scaling between zero and
unity is suggested. Normalizing the input and output parameters
might cause an actual increase in the output error for a network
trained to a certain precision when the errors are calculated for the
inverse normalization results. (For example, if the normalization
was done by taking the logarithm of the output neuron and the network
was trained to an RMS error €2. If we assumed a normalized output X
to have an error € the unnormalized output would have a value of X
with an error of geX.) Changing the temperature can help the network
still accept 1larger input values without the necessity for
normalization.

880

EXAMPLES OF CURVE FITTING WITH NEURAL NETS

A second curve fitting example was performed for the function

- sin (47X)

£x) 4nX

+ noise(X) 0<x<1 (6)

This function without noise was first approximated by a neural
network with two hidden layers and 5 nodes in each hidden layer (a 1-
5-5-1 network). The RMS error after training was 0.0000247, and the
overall fit is shown in Fig. 4. The fit provides very accurate
interpolations.

In a second step noise was added to the function according to
noise(X) = 0.2 X rnd(-1,1] (7)

The objective in this case is to obtain a curve fit that will do data
smoothing and that yields a plat similar to Fig. 4. Again a (1-5-5-
1) neural network was trained by error backpropagation to a RMS error
of 0.00035. This net has an excellent fitting performance (Fig. 5)
and the net can even trace the shape of the function in the X region
where the noise is dominant (0.7 < X < 1). When the noise becomes
too large compared to the function values the fitted curve flattens
out. The results from Fig. 5 clearly show that a feedforward neural
net trained with error backpropagation can be successfully employed
for the smoothing and interpolation of noisy functions.

DETERMINING THE BACKGROUND FROM TOF MEASUREMENTS

The purpose of this section is to illustrate the elegance of non-
parametric regression analysis with neural nets to experimentally
observed data for which there is no a priori knowledge of the overall
shape of the curve. In this application it is the aim to estimate
background data for total neutron cross section measurements. These
measurements were performed with the time of flight (TOF) method at
the linear accelerator (LINAC) at RPI. The background counts are
counts superimposed on the "good signal by off energy neutrons. The
background count rate is estimated and then subtracted from the
measurements. For these TOF measurements neutrons emitted from a
tantalum target are flying through a 25 meter evacuated flight tube
and hitting a neutron detector at the end of the flight tube. During
their path, the neutrons are also passing through a thin sample of
material whose cross section is being measured. Some of the neutrons
will be removed from the beam by this thin sample, and by comparing a
measurement with and without sample, the total neutron cross section
can be calculated. The measurements consist of tallying the number
of neutrons arriving at the detector as function of their arrival
times. The time of flight is a measure for the energy of these
neutrons.

The background is time dependent and depends on several parameters
such as the flight tube material and geometry, and the detector and
neutron emitting target geometry. The accuracy of the measurements
could be limited by the accuracy by which the time dependent
background can be measures. The background is estimated from a
separate experiment in the same laboratory setup, where filters are
introduced in the beam. The background measuring experiments
described here lead to background estimates for 4 thicknesses of gold
samples (with a thickness of 2.5, 5, 10 and 20 mils respectively) in
the beam. For each thickness there are 6 background measurements,
each one corresponding with a given neutron time of flight. It is
now desired to interpolate the background for about 5,000 different

881

time of flight channels. There is no theoretical expression for the
dependency of the background with the TOF, and a neural network will
therefore be an excellent choice to try to correlate the measured
data. For this experiment it is useful to extrapolate to an open
beam case (0 mil thickness gold sample) at the same time, because
these extrapolations can actually be compared with experimental
values. For this interpolation/extrapolation curve fitting
application a (2-4-2) feedforward artificial neural net was trained
by error backpropagation. The input variables to this net are the
time of flight and the gold sample thickness. The outputs from the
net are the experimentally measured background and the corresponding
background error. The network was trained to a RMS error of
0.0000653.

The results from this interpolation/extrapolation exercise are
summarized in Fig. 6. Only the two extreme background measurements
for the thickest (20 mil) and the thinnest (2.5 mild) sample are
shown. The error estimate on the measurements is represented for the
20 mil sample by error bars. The background extrapolated to zero by
the neural net is represented by the solid line. Not shown on this
plot are the extrapolated error values for the background. The
neural net solution gives results similar to those obtained from
different standard curve fitting techniques that are traditionally
used in our laboratory. The neural net solution is more elegant,
however, because of its ease of application and the fact that no a
priori assumptions about the shape of the background have to be made.
When comparing the neural net solution with tradition curve fitting
approaches for this application, the neural net results generally
lead to more convincing data fits as well.

CONCLUSIONS

Feedforward neural networks trained with error backpropagation lend
themselves very well to curve fitting applications and have several
similarities with the least squares fitting methods in statistics.
The neural net techniques offer a distinct advantage because of the
elegance by which the technique can be implemented, and because no a
priori assumptions about the shape of the fitting functions have to
be made. The advantages of nonparametric regression analysis by
neural nets over traditional LSF techniques become even more distinct
when several independent variables come into play, wherein the case
of fitting a nonlinear function (e.g., f (X,¥)) with LSF techniques
is more numerically complicated and the neural network solution is
the same as shown in this paper.

Feedforward neural nets are powerful methods for data smoothing,
but proper care has to be taken while selecting the number of hidden
layers, and the number of neurons in the hidden layers of feedforward
nets. A large number of neurons and a small training error will lead
to "memorization effects", and the interpolation predictions will be
inaccurate. This difficulty could be alleviated by avoiding
overtraining, or by selecting fewer nodes for the hidden layers.

REFERENCES

1. Jocelyn Sietsma and Robert J.F. Dow, "Creating Artificial Neural
Networks That Generalize", Neural Networks, Vol. 4, pp. 67-69
(1991).

2. Jules Thibault and Bernard P.A. Grandjean, "A Neural Network
Methodology for Heat Transfer Data Analysis™, Int. J. Heat Mass

Transfer, Vol. 34, No. 8, pp. 2063-2070 (1991).

FIG 1.

EURAL
Y = 0.5¢EXP(0.BeX) + noise

1. OFeFFECT OF BIAS
LIN SIGMOID

- /
wp &
=

Y/

Curve fits for neural
networks and LSF

1.0F

TEMPERATURE EFFECT
I ON SIGMOID TFF

~10.0 °.e 1e.@
X

FIG 2. Bias in sigmoid transfer

functions

1 .a 1] L MR T

e.sf .
~ r)
E |]
> L 4

e.er

_a.s-uml net fit to Y(x)msin(4mx)/(4mx)

FIG 3.

1.0

Effect of temperature on
sigmoid transfer function

2.8 .2 2.4 X e.6 e.8 1.8

FIG 4. 1-5-5-1 neural net fit
for f(x)= 2:DUTX)

4mx

BACXGROUND ESTIMATES FOR TOF

-
[
A
aud

[
il

[\
»

= NN extrepoiatilon @ MIL
fesana 20 MIL
——

2.5 MIL

N i

BACKGROUND counts/s

FIG 5.

Neural net fit for

109 1020
TIME OF FUGHT (TOF) in microaeconds

FIG 6. Estimating background
for TOF measurements

	page 1
	Images
	Image 1

	Titles
	"Least Squares Fitting" Using Artificial Neural Networks
	Y ARON DANON and MARK J. EMBRECHTS
	:INTRODOCT:ION
	Pmax kmax
	p P
	where o~ and t~ are the output value and training pattern value of
	error :II:
	NETWORlt SIZE AND FITTING QUALITY
	877
	(1)
	(2)

	page 2
	Images
	Image 1

	Titles
	878
	Net size
	Number of weights
	RMS Error
	1-1
	2 imax
	2
	(3)

	page 3
	Images
	Image 1

	Titles
	879
	where f (Xi) is the fitting function, and Yi are the given data
	PRESENTING DATA TO A NEURAL NET
	(4)
	(5)

	page 4
	Images
	Image 1

	Titles
	880
	8XAHPLES 01' CURVE I'I~~ING WI~H NEURAL Ni:~S
	A second curve fitting example was performed for the function
	(6)
	noise (X) = 0.2 X rnd[-I,I]
	(7)
	DETERMINING ~HE BACKGROUND I'ROM ~Ol' MEASUREMENTS

	page 5
	Images
	Image 1
	Image 2

	Titles
	881
	CONCLUSIONS
	1. Jocelyn Sietsma and Robert J.F. Dow, "Creating Artificial Neural

	page 6
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Titles
	882
	ge.5
	0.6
	0.0
	0.6
	0.8
	0.2
	0.4
	FIG 5. Neural net fit for
	41tx
	FIG 4. 1-5-5-1 neural net fit
	f(
	§
	1.0

	Tables
	Table 1

