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Abstract

Total neutron cross-sections are usually measured by a transmission experiment. In this experiment the transmission
through a sample is measured by taking the ratio of the background corrected counts measured with and without the
sample in the beam. This procedure can be optimized to reduce the statistical error in the measured cross-section. The
objective is to find the optimal sample thickness and time split between the open beam, sample and background
measurements. An optimization procedure for constant cross-section measurement is derived and extended to the area
under the total cross-section curve of an isolated resonance. The minimization of the statistical error in the measured
area also minimizes the statistical error in the inferred neutron width. Comparison of the analytical expression
developed in this paper and resonance parameters obtained from the SAMMY (Updated users’s guide for SAMMY:
Multilevel R-Matrix fits to neutron data using Bays’ equation, version m2, ORNTL/TM/-9179/R4) code is shown. The
comparison was done with both simulated data and data from transmission experiments that were previously done at
RPI. It is shown that the analytical expression can be used as a design tool for optimizing transmission experiments.
This will consequently result in more accurate measurements of resonance parameters and can shorten the time required
to reach a given accuracy. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 25.40.Ny; 25.60.Dz; 29.30.Hs
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1. Introduction

Transmission measurements are one of the
simplest experiments that can be done to obtain
total neutron cross-sections and resonance para-
meters. The measurement is done by placing a
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sample in a well-collimated neutron beam and
measuring the number of neutrons passing
through the sample with a neutron detector. The
background count rate is also measured and the
transmission is calculated as the ratio of the
background corrected count rate measured with
and without the sample. The total cross-section
can be a smooth function or contain resonances at
specific neutron energies. The transmission is
normally measured as a function of the neutron
time of flight. The transmission 7" at time of flight
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channel 7 is given by

T:w (1)
o — TIp

where rg and r, are the count rates in time-of-flight
channel i for the sample and open beam respec-
tively. The background count rate with no sample
in the beam in time of flight channel 7 is denoted by
r, and k denotes a normalization factor that
corrects for the attenuation of the background
when the sample is in the beam. Background
measurements are the most complicated procedure
in a transmission measurement and involve
measurements of the time dependent and indepen-
dent background count rates, the details of such
measurements can be found elsewhere [1,2]. In our
previous measurements [2] it was found that the
assumption that k is energy independent gives very
good results [2]. The relation between the trans-
mission and the samples cross-section is given by

T = exp(—No(E)) (2

where N is the sample number density (units of
atoms/b) and o((E) is the microscopic total cross-
section (units of barns) of the sample at energy E
that corresponds to time-of-flight channel i.

When conducting an experiment to determine
the total cross-section from the measured trans-
mission, it is desirable to reduce the statistical
error in the measured cross-section. Rose and
Shapiro [3] derived the optimum conditions for an
experiment with a constant cross-section. For an
experiment that is done in a fixed measurement
time they derived the optimal time split between
the open, sample and background measurements
and also the optimal sample thickness. In this
work we extend the treatment to find the optimum
experimental conditions for an experiment where
the objective is to minimize the statistical error in
the measured resonance parameters. In this case
we fit a resonance in the measured transmission
with a computer code such as SAMMY [4] or
REFIT [5] to obtain resonance parameters. Our
goal is to find the optimal experimental parameters
that would yield the lowest possible error in the
fitted resonance parameters.

2. Optimizing energy independent total cross-
section

First we will derive the optimal solution of the
constant cross-section case. This assumes that the
transmission is calculated using Eq.(1). The
derivation of the optimal solution is similar to
the work of Rose and Shapiro [3]. The current
work uses the expression for the transmission
given by Eq. (1), which is used in the RPI data
reduction codes. The results of this derivation are
required in order to extend the treatment to cross-
section resonances. The cross-section at some
neutron energy is obtained from Eq. (2):

c= — %ln(T). 3)

We can use error propagation to evaluate the error
in the total cross-section ¢ due to the statistical
error in the measured transmission (we neglect
errors in the sample thickness). The square of the
fractional error in the cross-section is calculated to
be:

Ao\’  (dc AT\’ @
o) \oT ¢
where Ao and AT represent the statistical error in
the cross-section and transmission, respectively.
The derivative of the cross-section with respect to

the transmission (evaluated from Eq. (3)) can be
inserted to the above equation to get

Ac\* 1 AT\> [ 1\?/AT\? 5
) -()-w) (7)o
This equation indicates that in order to minimize
the fractional error in the cross-section, the
fractional error in the measured transmission has
to be also minimized. The fractional error in the
transmission is calculated using the fact that the
statistical errors in the count rate measurements
with the open beam, sample and the background
measurements are independent. Propagating the
errors in the counting rates of Eq. (1), the
fractional error in the transmission is then given by
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(6)

Evaluating this expression with the partial deri-
vates of Eq. (1) yields:

2
(AT> = ! 3 Ar? + ! 5 Arf)
T (rs — kry) (ro —1v)

(rs — kr 0)2 >
(ro — 1o)*(rs — krp)? Al @)

The statistical error in the counting rate of the
sample (rs) and open beam (r,) measurements are
related to the measurement time ¢, and ¢,
respectively,

Arg == Arg == (8)

The statistical error in the background is normally
derived from a separate measurement such as the
one-notch two-notch method [1]. The basic
assumption is that similar to the open and sample
measurements, the squared counting error in the
background will also be inversely proportional to
the measurement time #,
2

AR = % 9)
A constant & (¢2 > 1) was added in order to allow
treatment of counting errors that are larger due to
the background measurement method or the
manipulation of the data. One example where we
might want to change &> is when the background
counting rate is fitted to a smooth function and the
error in the background is derived from the
covariance of this fit [2].

Substituting Eqs. (8) and (9) in Eq. (7) and after
some manipulation one can obtain.

S

1

(ro_rb)2

1ry 7 k 2£2rb
— =t — 1-—) —|. (1
T? ts+to+< T) t (10)

The background-to-signal ratio of the system m

can be defined as the ratio of the background

count rate to the net open sample count rate
'y

o —Tb

(11)

m =
The counting time for each measurement can be
written as fractions of the total counting time:

ts = ot ty = opt. (12)
Inserting Egs. (11) and (12) in Eq.(10), the

expression for the squared fractional statistical
error in the transmission becomes:

AT 2_m+1
T ) rot
y (eZX(km+eX)+m+1+(1kex)zgzm)

Ols %o Ob

lo = Ool,

(13)

where x = No, is the optical thickness of the
sample. It is important to note that the fractional
error in the transmission will be minimized for
infinitely thin sample (7" = 1) where the statistical
error in the counting rate is minimized. This is of
course not a useful result. However, the actual
quantity that is of interest is the total cross-section,
which has a unique minimum with respect to the
sample thickness and time split.

Inserting Eq. (13) back to Eq. (5) an expression
for the square of the fractional statistical error in
the cross-section can be obtained

Ao\’ m+1

o) rotx?
2x X _ LreX)2.2

X(e km+e +m+ll(l ke)em). (14)

s o Ob

This expression can be rewritten as

2
<&> _m l(f"z +f—02 +f—"2) (15)

o Fotx? \og 0y Op

where:

12 =e"km + e

ff =m+1

fo = —ke*)em.

Assuming a fixed counting time ¢, this expression
can be minimized with respect to o, o, and oy,
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keeping in mind the restriction ag + oy + op = 1.
The values of o, , and ap, for an optimum time
split are:

o — fs I
R A A A A
I | S

Jo+ S+ /o

Substituting these values back to Eq. (15) yields an
expression for (Aa/o’)2 where the time split
between the open, sample and background mea-
surements is optimized.

Ac\* m+1,
C—) =—— (s + 1o+ o)
G/ opt rolXx
~m+1
T trox?

+ (1 — ke¥)em'/?). (16)

((kme®* + )% + (m + 1)/

Eq. (16) can be numerically minimized to find
the optimal sample thickness x assuming fixed
counting time ¢. The results of such optimization
are shown in Fig. 1. The calculations were done
for the case of k =1 and &> = 1. Comparing the
results with those of Rose and Shapiro [3], for high
values of m there is a small discrepancy. This was
traced to an error in one of the derivatives used to
obtain Eq. (8) in the Rose and Shapiro paper. This
difference is small and does not effect the main
conclusions of their paper.
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—— Equation 16
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Fig. 1. Optimal transmission calculated as a function of the
background-to-signal ratio m.

This result gives some guidance for selecting
samples for a transmission experiment; Fig. 1
indicates that even for cases where the background
dominates (large m), the transmission should not
exceed 0.37. For the case of a small background-
to-signal ratio, the transmission should not be
lower than 0.08. Results of a calculation of the
variation of the optimal time split evaluated at the
optimal thickness for different values of m are
plotted in Fig. 2. The open beam time fraction o is
almost independent of m and has a value of about
20% of the experiment time. When the back-
ground-to-signal ratio m changes, there is a trade
off between the time spent on the sample and the
time spent on the background measurement. When
the background is large the time needed for the
background measurement will increase at the
expense of the time spent on the sample. In the
worst condition when the background dominates,
only about 30% of the time should be allocated to
the background measurement.

The change in the statistical error of the cross-
section as a function of the sample’s transmission
is plotted in Fig. 3. The results are shown normal-
ized to the fractional error of the optimal sample
and time split. The point where the curve is
tangent to the y =1 axis corresponds to the
optimal thickness. As the background-to-signal
ratio m increases the optimal transmission is
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Fig. 2. Calculation of the optimal time splits o, o, %, at the
optimal thickness as a function of the background-to-signal
ratio.
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Fig. 3. Calculation of the fractional statistical error in the
cross-section as a function of the sample’s transmission. The
data are normalized to the fractional statistical error of an
optimal sample measured with an optimal time split.

larger, which indicates that a thinner sample
should be wused. This is reasonable since a
measurement of larger transmission yields higher
count rates for the sample measurement and is
thus less sensitive to the background. When the
transmission deviates from the optimal value, the
statistical error in the measured cross-section will
increase. The fractional error increases very fast as
the sample becomes thicker and the transmission
becomes closer to zero.

These results can be used to design experiments
that involve a constant cross-section which may be
good for light elements. However, in many cases
the cross-section varies as a function of the
neutron energy and exhibits resonances at specific
neutron energies. We will now consider the case of
an isolated resonance.

3. Optimizing resonance parameters measurements

Transmission measurement using a white-spec-
trum neutron source and the time-of-flight method
is the simplest method to obtain the variation of
the total cross-section as a function of the neutron
energy. The measured transmission can be ana-
lyzed with a computer code such as SAMMY [4]

or REFIT [5] to obtain the resonance parameters
that represent the data. These resonance para-
meters are used to represent the data in cross-
section libraries such as ENDF/B-VI. It is there-
fore desirable to extend our previous analysis and
find the optimal experimental conditions that will
yield the lowest possible statistical error in the
derived resonance parameters with the restriction
of a fixed experiment time.

One method to find the optimal thickness is to
simulate a transmission measurement as a function
of energy for various sample thicknesses, fit the
transmission with a code like SAMMY and obtain
resonance parameters. The minimum error can be
found for a certain time split of the open, sample
and background measurement. This procedure is
very tedious and does not easily lend itself to
optimizing both the time split and sample thick-
ness for a given resonance. However it will be used
to verify some of the results derived in this paper.
We can extend the optimization results previously
obtained for a constant cross-section measurement
to measurements that include a resonance in the
cross-section.

Consider an isolated s-wave (angular momen-
tum / = 0) resonance at energy Ej, the total cross-
section can be expressed using the Breit—Wigner
formula [6],

E, r?
MOV dE Ry

4(E — E))R
x[1+7( = ")z] - (17)

where I' is the total width (I' = I'y(Eo) + Y., I'y), Z
is the reduced neutron wavelength, R is the nuclear
radius and oy is the peak of the non-Doppler
broadened cross-section given by

Fn(EO)
r

(18)

oy = 4n7£3g

where ¢ is a statistical factor determined by the
spin of the nucleus, 7y is the reduced neutron
wavelength at the resonance energy and Iy, is the
neutron width. Integrating the cross-section with
respect to energy, the area under the resonance is
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given by [6]
*® 1
= / (0((E) — 0pot) dEfzzﬂ:aoF. (19)
0

Thus combining Egs. (18) and (19) we can
rewrite the area under the resonance:

A = 2% 59T n(Ep). (20)

This result for the area under the resonance is
valid even when considering Doppler broadening
[6]. This expression for the resonance area implies
that when the neutron width is determined from
the resonance area A, minimizing the statistical
error of the area under the resonance will
consequently minimize the error in the neutron
width.

The resonance area can be calculated from the
transmission measurement by converting the
transmission data to cross-sections and integrating
over the entire resonance energy range. This can be
approximated by

Ax Z o dE; (1)

ieres

where o, is the total cross-section at channel i,
which corresponds to neutron energy E; where dE;
is the channel width in energy units. This expres-
sion neglects the potential scattering, which is
usually small relative to the resonance.

The procedure of converting the measured
transmission to cross-section and calculating the
area under a resonance should yield the same arca
regardless of the sample thickness. However this
will not work for samples where the transmission
is blacked out for many channels or for high
transmission where the data are dominated by
large statistical fluctuations.

The statistical error in the cross-section Ag; can
be propagated to a statistical error in the area
under the resonance.

=Y AGPAE? = Z(A(’) GAEL  (22)

ieres jeres \ 0i

Using Eq. (14) and making the approximation
that m and r, are constant over the resonance
energy range, the squared error in the resonance

area is given by

At (eZN‘T(E")km + eNal&) Lme 1
roN?* &~ Ot o
1 — keNoE22
Uz ke ™) m) AE?. (23)
b

Eq. (23) can be minimized using a procedure
similar to that done for optimizing the constant
cross-section case. The equation can be rewritten
by defining some constants as:
m+1 (CZ

c: 3
s o b
tr0N2 Ol 0o ocb) ( )

AA? =

where

C2 _ Z(eZNo'(E[)km =+ CNJ(E[))AE?,

ieres

C =) (m+AE;

ieres
=) (1 — keME)22mAE;.
ieres

Minimizing this equation with the constraint that
os + oo + o, = 1 yields the solution:

O(~=7CS 06276‘0
PTG+ CH+C Y Cot G+ Gy
T F Gt Gy

Inserting these values in Eq.(24) vyields the
solution

m+1

AA? = p” NZ(C + Co + Gy)? (25)

or

1/2

m+ 1 o(E, o(E,

AAz :W (Z(CZN (E’)km -+ eN (E'))AEl2>
ieE

12
+ (Z(m + 1)AE3>

ieres

1/272
+<Z(1keN“(Ef))2szmAEf> . (26)
ieres

This equation can be numerically minimized with
respect to N to get the optimal sample thickness
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Fig. 4. Plot of the optimal transmissions calculated for the
14.34eV resonance in Tm, also shown lines representing the
optimum transmission for the case of a fixed cross-section.

for the optimal time split. To demonstrate such
calculations, analysis was done for the 14.32¢V
resonance in Tm over the energy range 13.5-
15.5eV. The optimal thickness and time split were
calculated for several values of m. The transmis-
sion calculated at the optimal thickness for several
values of m, are shown in Fig. 4. Lines showing the
optimal transmissions for constant cross-section
measurements are also plotted. These calculations
indicate that for the case of a resonance, the
minimum transmission at the resonance peak is
much lower than the optimal transmission when
the cross-section is constant. The ratio of the
optimal transmission for a constant cross-section
to the optimal transmission at the resonance peak
decreases as m increases. The ratio for this case is
about 3.54 for m = 0.001 and 2.06 for m = 1. The
transmission at the resonance energy is 0.028 for a
background-to-signal ratio m = 0.001 and 0.156
for m = 1. This result is somewhat surprising and
indicates that in order to minimize the statistical
error a rather thick sample is needed.

Fig. 5 shows a comparison of the variations in
the statistical error in the resonance area as a
function of the sample thickness for various
background-to-signal values. This calculation in-
dicated that the “penalty” for deviating from the
optimal thickness is more severe when the back-

5.0

4.5

3.0

Fig. 5. Variation of the statistical error in the area under the
resonance as a function of the sample thickness for various
background-to-signal ratios. Calculated for the 3.9eV reso-
nance in Tm.

0.0001)

AABA (m

Fig. 6. Variation of the statistical error of the resonance area as
a function of the background-to-signal ratio for the 14.32eV
resonance in Tm.

ground-to-signal ratio is small. For example, when
m = 0.01 using a sample with half the optimal
thickness will result in an error about 1.4 times
larger than the optimal error. In order to achieve
the same statistical error of the optimal thickness,
a running time that is about 2 times longer is
required.
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A plot of the normalized statistical error in the
resonance area for the optimal time split and
sample thickness as a function of the background-
to-signal ratio m is shown in Fig. 6. The largest
error reduction occurs when m changes from 0.01
to 1. A relatively smaller gain in the fractional
error of the resonance area is obtained for values
of m<0.01.

4. Experimental verification

In order to verify the results, analysis of Tm
data that were previously published [7] was used.
First, we examine Eq.(14) for the case of a
constant cross-section. The fractional error in the
cross-section is a function of the optical thickness
of the sample x (x=Ng). The wing of a resonance
provides an excellent continuous variation of x as
a function of the neutron energy. The measured
transmission can be converted to cross-section
using the relation given in Eq. (2). The statistical
error in the cross-section is then given by

As -1 AT
o In(T) T
A sample with thickness of 0.0066484 atoms/b

was used for this comparison. The time split in the
experiment was: os = 0.34, o, = 0.24, o, = 0.42.

27)

4.0 T T T T T T
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36 4
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3.0 4
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Fig. 7. Comparison of the measured and calculated fractional
errors in the cross-section as a function of the sample’s
transmission.

The background normalization constant for this
sample was k = 0.7 and &> was set equal to one.
Fig. 7 shows the measured and calculated frac-
tional errors in the cross-section normalized to the
optimum value. The calculations are shown for the
39eV resonance with m=1/77 and 17.4eV
resonance with m = 1/25. These background-to-
signal ratios were taken from our previous
measurement of the signal to background for the
RPI Enhanced-Thermal-Target [2].

The agreement between the measured and
calculated errors is very good. This is not
surprising since the experimental error was calcu-
lated from the measurements in a manner similar
to that described by Eqgs. (1)-(14). The process of
calculating the experimental error involves addi-
tional steps such as normalizing runs to the beam
monitors and a more complicated treatment of the
background [2]. As expected, the resonance at the
higher energy where the background-to-signal
ratio has a smaller value reaches a minimum error
for a thinner sample (higher transmission). The
fact that ¢ was set equal 1 and the agreement
between the theory and experiment is good
indicates that the error in the background scales
with time in a very similar way as the open and
sample measurements. This type of comparison
also serves as a confirmation of the quality of our
previous error analysis.

The optimization procedure described pre-
viously in Eq. (26) was done only for the cross-
section area under the resonance. Eq. (20) indi-
cates that if the statistical error in the area under
the cross-section is minimized this subsequently
minimizes the error in the derived neutron width.
In order to demonstrate that this is valid,
resonance parameters have to be obtained from
transmission data. This can be done by using the
fitting code SAMMY [4].

Since SAMMY is a shape fitting code it does not
determine the neutron width directly from the
resonance area but rather from the shape of the
measured transmission. The theoretically calcu-
lated transmission is fitted to the measured
transmission data. Nevertheless if the statistical
errors are propagated properly through the code it
is expected that the statistical error in the neutron
width will still be proportional to the statistical
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error in the area under the resonance cross-section
since Eq. (20) still holds true.

A simulation program was written to generate
transmission data for several sample thicknesses.
The program simulates a transmission measure-
ment and the associated statistical error as a
function of the neutron energy. The program
samples the counts for the open, sample and
background measurements from a Gaussian dis-
tribution. The simulation can use any value of the
background-to-signal ratio m and any time split.
The sampled counts are calculated from an open
sample count rate typical of our observed count
rate. The statistical error in the transmission is
calculated based on the statistical error of the
sampled counts. A Doppler broadened cross-
section was used to calculate the transmission
through the sample. The simulation does not
include the instrumental resolution of our experi-
ment.

The comparison was done for the 3.9e¢V
resonance in Tm. The radiation width for this
resonance [7] is I', = 102.4meV and the neutron
width is I'y = 7.38meV. The optimal sample
thickness and time split were calculated using
Eq. (26) for background-to-signal value of m =
1/77 (k=1,¢&* = 1). The optimal values found are
N =145 x 10~*[atom/b], a, = 0.365, o, = 0.479,
op = 0.157. A simulation of the transmission of
this resonance was calculated for 5 samples with

1.0 4
0.8 +
s
®n 0.6
kY]
£
(72}
g
.'__ 0.4
0.2
o 0.00005 atom/barn
o 0.000145 atom/barn
0.0002 atom/barn
0.0 . T . T . T T v T v T
32 3.4 3.6 3.8 4.0 4.2 4.4 4.6
Energy [eV]

Fig. 8. SAMMY fit to simulated data for the thickest, optimal
and thin sample thicknesses.

thickness ranging from 0.00005 to 0.0002 atoms/b
while still keeping the optimal time split. The
simulated data were fitted by the SAMMY code by
letting the code vary the resonance energy and the
radiation and neutron widths. The simulated data
and the fits of three representing sample thick-
nesses are shown in Fig. 8.

According to Eq. (20) the statistical error in the
neutron width should correlate to the statistical
error of the resonance area under the cross-
section. Fig. 9 shows a comparison of these two
errors. The error in the resonance area was
calculated using Eq. (26). Both errors were nor-
malized to the lowest value obtained (which also
occurs close or at the optimal thickness). The
minimum in both cases occurs for the same
optimum thickness. However the minimum curve
is much flatter for the error in the neutron width.
For thinner samples the normalized error calcu-
lated for the resonance area overestimates the
normalized error obtained from the neutron width.
The deviations are attributed to the fact that
SAMMY obtains the neutron widths by fitting the
shape of the resonance and the fit is weighted by
the statistical error in the transmission. This gives
more importance to the shape of the resonance
wings where the error is smaller than in the
transmission valley.

26 T v T v T T T
24 _ —&— Calculated error in the resonance area A
’ --@-- Error in the SAMMY fitted rn
2.2 1 -
2.0 1 -
=
o ]
=
w 1.8 i
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3 ]
= 1.6 E
®©
g 4
o 144 -
Z 4
1.24 -
1.0+ -
0.8

T T T T T T T
0.00005 0.00010 0.00015 0.00020
Sample Thickness [atoms/barn]

Fig. 9. Comparison of the calculated fractional statistical error
in the resonance area and the fractional error in the fitted
neutron width for the 3.9eV resonance in Tm.
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As seen from Fig. 9, optimizing the resonance
area is very effective in reducing the statistical
error in the obtained resonance parameters for a
given run time. Since the error in the transmission
scales with the square root of the time the benefit
of running with optimum thickness could amount
to large saving in measurement time for the same
statistical error in the fitted neutron width.

To further confirm the minimization procedure
a comparison to experimental [2] data was
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Fig. 10. Experimental and SAMMY fitted results for the
17.44 eV resonance in Tm.
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performed. The resonances at 14.32 and 17.44eV
in Tm were used for this comparison; the
resonances were fitted with the SAMMY code.
The experimental and fitted data for the 17.44¢eV
resonance are plotted in Fig. 10.

The error in the inferred neutron width was
normalized to the minimum valve and plotted for
both resonances in Fig. 11. The time split and the
background-to-signal ratios of the experiment
were used in order to calculate the statistical error
in the resonance area under the cross-section
curve. The experimental data were taken with a
different measurement time for each sample and
the calculations of the error in the resonance area
were normalized accordingly. The calculated
values were then minimized to the sample that
gave the smallest error.

For the 14.32 eV resonance with background-to-
signal ratio of m = 1/30, the minimum error is
obtained at sample 2 with thickness
N = 0.0008552 atoms/b. As we previously ob-
tained with the simulation, the errors obtained
with the analytical expression change much faster
with the sample thickness. However the minimum
error in the analytical calculation and the SAM-
MY fit occurs at the same sample thickness. The
error in the neutron width obtained from the
experimentally measured samples indicates that
changes of a factor of two in thickness relative to
optimal thickness yield about a factor of two
larger errors in the fitted neutron width. Thus
optimizing the experiments has direct impact on
the obtained parameters and can help reduce the
error for a fixed measurement time experiment.

Similar results were obtained with the 17.44¢eV
resonance. As expected for a smaller background-
to-signal ratio of about m = 1/25 the optimal
thickness is larger. Again the minima valley is
much shallower for the error in the neutron width
but the location of the minimum agrees with the
analytical calculations.

5. Summary and conclusions
Optimization of transmission measurements can

reduce the statistical error in the measured cross-
section. The optimization procedure assumes that
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a transmission experiment is comprised of the
three measurements; an open beam, a sample in
the beam and a background measurement. The
optimization procedure finds the optimal sample
thickness and the time split between the three
measurements that will minimize the statistical
error in the cross-section.

In case of a resonance, it was demonstrated that
minimization of the statistical error in the mea-
sured area under the cross-section will in turn
reduce the statistical error in the inferred neutron
width. Calculations of the statistical error in the
area under the cross-section curve of a resonance
were compared with the statistical errors in the
inferred neutron width. Simulated and experimen-
tal data were fitted using the SAMMY code. The
error obtained from the code was compared with
the error calculated for the area under the cross-
section curve of the same resonance. For a certain
condition of the time split the statistical error
calculated for the resonance area or obtained from
the neutron width exhibits a minimum in the same
location. However the statistical error in the
neutron width has a shallower valley and is less
sensitive to changes in the sample thickness
compared to the analytical calculations. This is
attributed to the fact that the SAMMY code is a
shape fitting code. Thus the parameters are
obtained from the resonance shape in transmission
and not the resonance area under the cross-section
curve. Nevertheless dependence of the area under

the cross-section curve on the neutron is still
preserved and results in the correct prediction of
the optimal experimental conditions.

The methods described here can serve as a
design tool for future experiments. Optimizing
transmission experiments will result in more
accurate resonance parameters and reduction of
the measurement time. For transmission measure-
ments that are done in order to resolve a specific
resonance, only one sample with the optimal
thickness measured with the optimal time split is
required.
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