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Abstract —Monte Carlo algorithms are developed to calculate the ensemble-average particle leakage
through the boundaries of a two-dimensional binary stochastic material. The mixture is specified within a
rectangular area and consists of a fixed number of disks of constant radius randomly embedded in a matrix
material. The algorithms are extensions of the proposal of Zimmerman et al., using chord-length sampling
(CLS) to eliminate the need to explicitly model the geometry of the mixture. Two variations are considered.
The first algorithm uses CLS for both material regions. The second algorithm employs limited CLS
(LCLS), using only CLS in the matrix material. Ensemble-average leakage results are computed for a
range of material interaction coefficients and compared against benchmark results for both accuracy and
efficiency. Both algorithms are exact for purely absorbing materials and provide decreasing accuracy as
scattering is increased in the matrix material. The LCLS algorithm shows a better accuracy than the CLS
algorithm for all cases while maintaining an equivalent or better efficiency. Accuracy and efficiency
problems with the CLS algorithm are due principally to assumptions made in determining the chord-length
distribution within the disks.

[. INTRODUCTION physical problems. These applications include stochastic
stellar or atmospheric medtas heterogeneous shield
Interest has continued to grow in recent years regardnaterial* two-phase coolant, or fractured geological
ing methods that solve the particle transport equation fofaterial®
systems whose material properties are only known in a  The statistical nature of the geometry of a stochastic
statistical sens&'®Thesestochastic mixtureystems by mixture adds a significant complication to the solution
definition contain two or more immiscible materials ar- of the underlying transport equation. Because the mate-
ranged randomly. The special case of two immiscibl&ial properties are at best only known statistically, it is
materials in a random arrangement is referred to as got possible to explicitly model the material properties
binary stochastic mixture. The binary stochastic mixtureof the problem. The transport equation in its traditional
has received particular attention in the literature becaus@rm therefore cannot be directly applied to a stochastic
of its relative simplicity and applicability to a number of mixture. Because the material properties are not known
explicitly, the particle flux as a function of position is a
*E-mail: donovat@KAPL.gov spatially random quantity that is very difficult to compute
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deterministically. Exact analytical solutions for trans- Calculation of benchmark results for stochastic mix-
port in a binary stochastic medium can be derived onlyures using Monte Carlo is a very costly exercise. The
for simple casesand are of limited usefulness. The idealensemble-averaged transport solution is computed in the
approach to the stochastic mixture problem would be téollowing way:
find a method to determine the probability distribution ) - o o
function (PDF) of the fluxy (r). However, because this 1. Build a_specmc reallz'atlon o_f 'ghe stoc_ha}stlc mix-
approach is rarely feasible, most methods are concernddre by sampling from the given mixing statistics.
with determining the ensemble-averaged flux. Some meth-
ods have also been developed to determine the seco&qiC
moment, or the varianceof the flux.

A general stochastic transport model was developed 3. Repeat for a large number of realizations, and
by Adams, Larsen, and Pomranifighis model is valid  ayerage the results.
for a binary stochastic mixture with Markovian mixing
statistics. Markovian mixing statistics are defined by This method is exact in the limit of probability as the

number of realizations approached infinity. However, this
ﬁ i 1) method is too costly to be practical for routine use.
Ai(s) J ’ Zimmerman and Adané and Zimmermat® rea-
soned that the mixing statistics for a binary mixture could

whereP(i — j) is the differential probability that, start- be incorporated into the Monte Carlo transport solution
ing from material, points + dsis in materialj # i. The to provide an approximation of the ensemble-averaged
Ai(s) parameters are the Markovian transition lengthsolution. This is a natural extension of the Monte Carlo
that completely define the statistics of the mixture. Formethod, which is based on random sampling from known
homogeneous mixing statistics the transition length iprobability distributions. Zimmerman and Adams pro-
independent ofand can be interpreted as the mean chorghosed three algorithms of increasing complexity based
length through packets of materiand in direction).  on chord-length samplin@CLS). These algorithms were
Although exact for the specified mixing statistics, theused to compute leakage and reflection results for one-
difficulty with the Ref. 8 model is that it is not closed dimensional1-D) rod geometry problems. These results
since it contains two equations and four unknowns. Thehowed that the pure CLS method is equivalent to solv-
additional two unknowns are interface ensemble-averagedg the Levermore equations. Furthermore, the retention
flux contributions, conditional upon the positiébeing  of information about the sampled material distribution
on the interface between materiadnd materiaj. These was shown to improve accuracy at the cost of increased
additional terms can be interpreted as additional sourceomputational complexity.
terms in the stochastic transport equation accounting for The reported early success of Monte Carlo CLS
particles leaving one material and entering the other. Anethods by Zimmerman and Adams for simple 1-D
number of efforts have been made to provide closure tetochastic mixture problems warrants further investiga-
this model. These efforts range in complexity from thetion of the use and performance of these techniques in
simple and well-known Levermore approximatfoto ~ multidimensional problems. The extension of these tech-
higher-order closure schemes of varying complekity. niques becomes more important considering the increas-
The accuracy of some of these closure methods was stuithg dependence on Monte Carlo methods for tackling
ied by Malvagi and Pomranin§,who concluded, as ex- large multidimensional problems combined with the in-
pected, that accuracy is improved with increased modeaireasing computing power available to bring to bear on
complexity. such problems. Given the wide list of applications that

The complexity of the coupled stochastic transpordeal with stochastic mixtures, the ability to model sto-
equation, especially when combined with higher-ordechastic mixtures within large-scale models using a
closure equations, makes this problem extremely chapowerful standardized Monte Carlo code could find a
lenging to solve. Most recent efforts have presented dezonsiderable audience. Such a capability would elimi-
terministic methods or hybrid deterministionte Carlo nate the need to either model such mixtures as homo-
methods for solving these types of problems. These hygeneous, a simplification that is known to be of limited
brid methods use Monte Carlo only in a loose definitionvalidity,*3¢ or spend the considerable effort to explic-
of the technique in that random sampling is used only tatly model the stochastic mixture.
generate many individual realizations of the random mix-  The purpose of this work is to extend the concept of
ture that are then solved using deterministic method<CLS into a specified two-dimension&2-D) problem.
Analog Monte Carlo techniques have mostly been apA pure CLS technique, as well as the derivations of
plied only to compute so-called “benchmark” resdlts*  the appropriate chord-length distributions, is described
These benchmark results have then been used in provitbr the problem. In addition, a second technique is de-
ing comparisons to results obtained using these alternateloped that eliminates CLS in one of the materials.
methods. Ensemble-averaged results obtained with both techniques

2. Perform a Monte Carlo simulation for that spe-
realization and tally the quantities of interest.

P(i—j)=
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are then compared to benchmark results obtained usingalls. The second goal of this analysis is to compare the
standard Monte Carlo. Results are also compared to reomputational efficiency of the two algorithms to that of
sults generated using a simple homogenization of ththe benchmark method. Since the absolute times will
stochastic mixture in order to show that for the problemsrary significantly between platforms, these results are
investigated, the homogenization technique does not preormalized by the elapsed time required for the bench-
duce acceptable results. mark results in each case.
Six cases were selected to cover a range of inter-
action coefficients. Table | gives the materials’ inter-

Il. ANALYSIS action coefficients for the six cases.
The physical dimensions of the bounding rectangle
II.LA. Description of Problem are the same for each problem. The widlttend height

) o H are fixed at 20 and 50 cm, respectively. The number of

Figure 1 represents the 2-D stochastic mixture to bglisks N in each problem is also kept fixed at 50. The
analyzed. The bounding area for the problem is a rectanadius of each disk is fixed at 0.5 cm for each case. The
gle_of arbltrar_y 'dlm'enS|ons.' The particle SOL!TCQ will begijx cases represent a pure scattering case, a pure ab-
defined as originating outside of the bounding volumesorber case, and four cases of varying absorptive and
and incident on the left side. For simplicity, the source isscattering characteristics. For cases 1, 2, and 3, the mag-
defined to be a pencil beam normal to the rectangle walhijtudes of the interaction coefficients are chosen to rep-
This problem is monoenergetic in order to simplify theresent the commonly referenced case of a sparse “black”
analysis. However, energy dependence in the source afghterial(M0) randomly mixed within an optically thin
material interaction coefficients could easily be includednatrix material(M1). Reference 16 discusses this spe-
without altering the CLS algorithms that are of principal cial case and the fact that the commonly applied “atomic
concern. o ) ) mix” model, wherein the stochastic mixture is converted

‘The binary stochastic mixture consists of disks ofto a homogeneous material of volume-fraction-averaged
radiusr and material O surrounded by a matrix of mate-interaction coefficients, cannot be expected to provide
rial 1. Materials 0 and 1 possess both absorption angccurate results. In order to show that this is true, results
scattering coefficients. Scattering is treated as isotropigre computed for all six cases using a simple homogeni-
in the lab system, meaning that a particle’s exiting direczation of interaction coefficients.

tion, theta, is sampled uniformly from 0 tor2 The in- Cases 4, 5, and 6 have the same interaction coeffi-
teraction coefficients of both materials will be varied for cients for material 0 as case 1, but the absorption coef-
different cases. The number of disks contained in thgicient of material 1 is zero. For these cases, the scattering
rectangle is fixed for all problems. Disks are randomlycoefficient of material 1 is increased in order to study the

placed within the rectangle with the constraint that the)éﬁ’ects on the accuracy of the Monte Carlo a|gorithms_
may not overlap other disks or the rectangle boundaries.

The goal of the analysis is to calculate the mean II.B. Benchmark Method
leakage through each of the four walls of the bounded
area. Leakage means the fraction of source particles that Figure 2 is a flow diagram that describes the
escape the system by passing through each of the foidonte Carlo algorithm used to generate benchmark

———— Width W »  Material 0: 3,0, %

R y ‘/ A
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Fig. 1. Binary stochastic mixture: disks embedded in a makrix;is absorption coefficient of materialcm™1), ands; is
scattering coefficient of material(cm™1).
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TABLE |
Material Scatter and Absorption Coefficients for Six Cases
Material O Material O Material 1 Material 1
Scatter Absorption Scatter Absorption
Coefficient Coefficient Coefficient Coefficient
25,0 Ea,o Es,l za,l
Case Number (1/cm) (1/cm) (1/cm) (1/cm)
1 (absorbing+ scattering 10 10 0.01 0.01
2 (pure absorbinp 0 10 0 0.01
3 (pure scattering 10 0 0.01 0
4 (absorbing+ scattering 10 10 0.1 0
5 (absorbing+ scattering 10 10 1.0 0
6 (absorbing+ scattering 10 10 2.5 0
ensemble-averaged leakage results for the stochastic mix- II.C. Chord-Length-Sampling Algorithm

ture problem. Results generated by this benchmark
method provide “true” results that can be compared Figure 3 describes the CLS algorithm used in this
against results obtained by more approximate methodsiork. Zimmerman and Adam$and Zimmermat? first
Ensemble-averaged leakage results obtained by thgroposed the basic premise for this algorithm for track-
benchmark method are exact in the limit as the numbeng particles through a stochastic mixture. The impor-
of realizations approaches infinity, even if the numbertant feature of this method is that it does not model the
of histories per realization is only one. For the benchbinary mixture explicitly. This eliminates the need to
mark method, only one particle history is simulatedmodel a large number of complete physical realizations
per realization. This is necessary in order to provide @f the problem. Instead, the material identity for a given
fair efficiency comparison to the two CLS algorithms location is treated as a characteristic of the source parti-
that effectively sample a different realization for eachcle. This capability could have significant advantages
particle. for a stochastic mixture containing thousands of ran-
A Monte Carlo code was written that follows the domly dispersed volumes. Instead of explicitly model-
sequence of Fig. 2 to calculate benchmark ensembléng all material volumes, all that is required are the
averaged leakage results for the problems of interesmaterial probabilitiegvolume fractions and the chord-
Homogeneous mixing of the disks for a given realizationength distributions in each material.
within the rectangle is achieved by randomly sampling  Since the source particles are defined to enter the
the coordinates of each disk successively within theectangle from the outside, the initial material identifier
bounding area. Sampled disks are not permitted to ovefer the source particles is always chosen to be material 1.
lap either on previously sampled disks or on the are&fter the source particle’s initial characteristics are sam-
boundaries. Once the realization is specified, then sourqaded, three distance calculations are made. First, the dis-
particles are sampled from the source distribution for théance between the particle and the system bounDary
problem, and transport is simulated through the area unis computed. The second calculation is the distance to
til the particles either escape the boundary or are killedcollision D¢ ; D¢ is sampled using the current material’'s
Particle absorption is simulated implicitly using the weighttotal interaction coefficient. These two distances are al-
reduction method rather than explicitly terminating theways computed in a Monte Carlo particle-tracking algo-
particle. When particle weightv drops below a weight rithm. The last distance calculation is of the distance
cutoff limit C2, a random number is sampled in the rangéetween the particle and the material interfage In
(0,2). If the random number is greater th&hdivided by  this algorithm D, is sampled from a chord-length distri-
a second cutoff limit C1, then the particle is terminatedpution for the sampled material. The use of CLS reduces
and a new history is begun. If the random number is lesthe calculation of the minimum distance to a disk to a
thanW/C1, then the particle weight is increased to C1,simple sampling from a known probability distribution.
and the particle history is continued. This variance reThe three distances are compared, and the minimum dis-
duction method is common and is the same as used, féance dictates which event occurs.
example, by the MCNP Los Alamos Monte Carlo parti- If Dg is the minimum distance, then the particle es-
cle transport codé’. capes the system. The wall through which the particle
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Create realization j of the physical system ¢
Create source particle i with position r, weight Wand |
direction .

Calculate the distance to boundary D,,. distance to disk
Dy, sample distance to collision D,...

v

D= minimum( D, Dy D;)

Dmm = DB
4
Update r Update r. Q. Escape. tally
reduce W leakage
Survive
Change

v Roulette W —»A
Calculate Distance to Escape Disk
Dy. sample Distance to collision D ¢ J

D, = minimum( D.. Dy)

Yes Update r, €2,
reduce W

Exit disk,
Update r

Survive

Kill

v

Average Tally Results over all Realizations to compute
ensemble-averaged transmissions

Fig. 2. Monte Carlo algorithm for determining the benchmark ensemble-averaged solution for a stochastic mixture.

escaped is noted, and leakage is tallied. A new particlthen the particle advances to the material interface, and
history is then begun. ID¢ is the minimum, then a col- the material identifier is switched. After the particle’s
lision is sampled. The particle’s position is updated, angbosition and material are updated, then the distance cal-
weight is reduced at each collision site based on the suculations are repeated, and the particle is tracked until it
vival probability. As described in Sec. 11.B, particle rou- escapes or is rouletted.

letting is performed if the particle weight drops below a  The weakness of the CLS algorithm lies in the fact
specified value. If the particle survives the colliside., that the particle’s pastis ignored after each collision event.
is not rouletted, then a new direction is sampled, andBy allowing the particle’s future to be independent of its
the distance calculations are repeated. Finally, if the digpast, the CLS algorithm inherently assumes that the trans-
tance to the material interface is the minimum distanceport of a particle in a stochastic mixture is a Markovian
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Model the boundary. materials 0 and 1 not modeled explicitly

v

Create source particle i with position . Q. W, Material (M) = 1 |<

v

For M=1. calculate the distance to boundary D,,. sample distance

to collision D.. sample distance to interface D;. <

v

———— | D,,,= minimum( D, D, Dy)

I
D =Dy
Update r, Q.
Bound
D, =HUGE oundary reduce W
Overlap
\ 4
Change
Update r, W _’A Escape. tally
M=0 leakage
Sample Distance to Interface D;.
Sample Distance to Collision D \ 4
¥ )
D,;, = minimum( D.. D)) A
Survive
Update r. Q.
reduce W Roulette
Exit disk.
Update r. M=1

Average Tally Results over all Realizations to compute
ensemble-averaged transmissions

Fig. 3. CLS method.

process. In a Markovian transport process, the particlesential distribution of chord lengths between material
prior interactions have no effect on the future inter-boundaries.

actions of the particle.(Note the distinction between Transport through a homogeneous material is
the use of the terms “Markovian Transport,” which re-Markovian. However, particle transport through a het-
lates to a characteristic of the transport in a region, androgeneous material such as a stochastic mixture is
“Markovian mixing statistics,” which specify an expo- not a Markovian process because the distances to the
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surrounding material interfaces depend on the past trarxo memory of the disk is kept. Figure 4 shows a calcu-
jectory of the particle. By resampling the distance to thdational schematic for the LCLS algorithm.
material interface following each collision, it is possible By modeling individual disks explicitly, this algo-
that the particle will be in a different material at one rithm maintains a limited amount of memory regarding
point in its history than it was in at the same positionthe particle’s past. This “partial memory” capability pre-
earlier in its history. Obviously, in general, this is notvents a particle within an explicit material 0 disk from
physically possible. The only location where it would besuddenly finding itself within material 1 without first
possible for a particle to encounter either material at thescaping the disk. The LCLS algorithm reduces the as-
same location is at the interface between the materialssumption of pure Markovian transport made by the CLS
By allowing the material to be resampled at any po-algorithm. However, it is not entirely eliminated since
sition during a particle history, the CLS algorithm effec- each disk is discarded as soon as a particle exits it. There-
tively makes the same assumption as the Levermor®@re, upon backscatter from within material 1, the parti-
approximation—that the average flux across material inele could “see” a disk where there had previously been
terfaces is equal to the average flux across the interiarone, or vice versa. The concept of applying partial mem-
points. It must be noted here that for the problem deery was also proposed by Zimmerman and successfully
fined, that of disks of uniform radius randomly mixed applied in limited 1-D slab problems. However, the im-
within a matrix, the mixing statistics are not strictly Mar- plementation of partial memory for the binary stochastic
kovian. The chord-length distribution in material 1 canmixture of this problem is unique.
be approximated by an exponential relation as we show The method for explicitly modeling a material O disk
later, but the distribution in material 0 cannot. Becauseas now described. While in material Dg is calculated,
the Levermore approximation is defined for a systenD¢ is sampled, an®, is sampled from the material 1
with Markovian mixing statistics, the comparison madechord-length probability distribution. B, is determined
between it and the CLS Monte Carlo algorithm is onlyto be the minimum distance, then another sampling
intended to be approximate. scheme is followed to determine the coordinates of the
For the case of purely absorbing materials for whichrsampled disk. The location where the particle would cross
exact chord length distributions are known, the CLS alinto a material O disk is calculated based on the particle’s
gorithm is expected to be exact. This statement can bgosition, its direction, an®,. As shown in Fig. 5, two
easily understood when one considers that for the pun@ndom numbers are then sampled to determine the co-
absorber, a particle can move only forward. Its past hasrdinates of the disk. The first random numlgdrsam-
no influence since there is no mechanism to scatter ples a chord lengtiAo from the probability distribution
particle back into a region through which it has alreadyfor a disk. The second random number determines the
passed. Since the past is irrelevant to the particle in sensg +) of the center of the disk relative to the chord.
purely absorbing medium, the transport is Markovian.  After the coordinates of the disk have been sampled,
Therefore, if the chord-length distributions are knownthe restriction that the disk may not overlap the bound-
exactly, then the CLS algorithm yields exact results. Asary of the problem is tested. This is done by calculating
scattering becomes more dominant in a given problenthe distances in the andy directions from the disk co-
the transport becomes more non-Markovian, and the aordinates to the four bounding walls of the problem. If

curacy of the CLS algorithm will deteriorate. any of the distances are less than the radius of the disk,
then the sampled disk overlaps one of the boundary walls
I.D. Limited-Chord-Length and is not accepted. Once a disk is rejected for overlap-

Sampling Algorithm ping the boundary, the value @ is reset to a “huge”

value. The next event in the transport of the particle is
In order to account for the non-Markovian nature ofbased on the comparison B andDc. If the disk is

the transport process for stochastic mixtures, the effecccepted, then the particle is moved forward to the inter-
of the particle’s past have to be taken into account in theection point, and transport through the disk is performed.
determination of the next event. The limited-CUSLS)
algorithm combines the CLS technique with limited ex- II.E. Derivation of the Chord-Length
plicit geometric representation of the stochastic mixture. Distributions
This is done in order to reduce the errors that result from
the assumption of Markovian transport implicit in the The 2-D binary stochastic mixture of interest con-
pure CLS algorithm. Instead of using CLS, the algorithmsists of disks of material 0 randomly mixed within a
takes advantage of the closed, simple geometry of theecond material, material 1. Since there are two distinct
material O disks and treats these regions explicitly. CLSnaterial types in this mixture, there are two correspond-
is used for transport through material 1 and to specifyng sets of chord-length distributions. These chord-
the location of material O disks. Once a disk’s location idength distributions describe the probability that a chord
specified, particle transport through the disk is done usingf lengthdx aboutx( p(x)dx) may be encountered as a
traditional Monte Carlo. After the particle exits a disk, ray makes a track though either material.
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Model the boundary, materials 0 and 1 not modeled explicitly

v

Create source particle i with position r, Q, W. Material (M) = 1 |<
Calculate the distance to boundary D,;, sample distance to
collision D, sample distance to interface D,. ¢
P D,,»=minimum( D... D, Dy,)
No / Dmm = Dli
Sample Disk l
Coordinates Update r. Q. Escape, tally
reduce W leakage
Yes Gound
_ oundary
D, =HUGE Overlap Change | —pp
W A
No
Update r,
M¢=0 \!
Calculate Distance to Escape Disk D;.
sample Distance to Collision D, ¢ Histories No
+ Change
w Yes

D,;,= minimum( D.. Dy)

min

Yes Update r. Q.
reduce W

Survive

Kill

No
Exit disk.
D, =D, Update r, M=1
Average Tally Results over all Realizations to compute
ensemble-averaged transmissions
Fig. 4. LCLS method.
II.E.1. Material O(Disk) Chord-Length is defined as a line segment whose endpoints both lie on
the circle. The chord of a circle is also perpendicular to

Distributions
the radial line containing the midpoint of the chord. The
The chord-length distribution for the disk of radius derivation of the chord-length distributions for mate-
will be derived first. In the case of a circldisk), a chord rial O is fairly straightforward. We desire to determine
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€2 determines positive or negative sense

€1 fixes chord length A

Fig. 5. Determination of disk coordinates for the LCLS algorithm.

the probability distribution of chords that are “randomly chord. Since the angle of rotation does not affect the
distributed” in a circle. The solution to this problem is chord distribution, we can then simplify the derivation
dependent on exactly how the chords are randomly disef the chord-length distribution by assuming that the chord
tributed. This phenomenon was first observed by Beris horizontal, meaning tha = 0. The chord-length dis-
trand and is now known as Bertrand’s Para#Xhe tribution then becomes that of a disk placed in a parallel
different methods of defining random chords in a circlebeam.
have been examined by Jayri@saynes showed that the To determine the transformation between the chord
“natural” chord-length designation was that in which thelength A and the random variablg we equate
polar coordinates of the chord midpoi(#, 6) are sam-
pled randomly, wher¢ andé are shown relative to the p(A)dA = p(£)dé . (2
circle in Fig. 6.

Looking at Fig. 6, one sees it is apparent that anyRearrange Eq2) to separate the probability distribution
rotation of the circle does not change the length of thdor the chord length and obtain

Fig. 6. “Random” chord in a circle.
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o(h) p(¢) 3 II.E.2. Material 1 Chord-Length Distributions

d_)‘ It does not appear feasible to analytically derive the

d¢ chord-length distribution for chords between the disks.

Su and Pomranirfgexamined this problem and showed
that by assuming fixed circle chord lengths equal to the
average chord length, in the limit for very large systems
E=(0,r) , (4)  with homogeneous mixing, the PDF for chords in mate-
) , ) rial 1 reduces to a Markovian model. We assume that the

wherer is the radius of the circle. Therefore, the proba-\1arkovian model is an acceptable approximation for

The random variabl€ is distributed uniformly from
Otor:

bility distribution for & is simply chords in material 1 for this problem. This means that
1 the material 1 chords fall in an exponential distribution
p(¢&) = e (5)  of the form
The relationship between the sampled varighbded p(A) = _i e A WA (10)
the chord lengthh is given from the equation for the A1
circle,

where A is the chord length and; is the mean chord
A=2\rz2—¢2 . (6) length through material 1. The CPD is obtained by inte-

. I . . . grating Eq.(10):
Taking the derivative of this expression yields

A
‘d_/\ 2% ) P(A) = f p(A)dx=1—e W) | (11)
dé |~ Ve g ;
; ; : Equation(11) is a simple expression that can be used
;uebgﬁé%elgr?;ﬁ? and(7) into (3) to yield the PDF for to sample chords through material 1. A key difference
between this distribution and the distribution for mate-
1 rial O is that the mean chord length for material 1 must be
r A known or approximated in order to use the distribution.
p(A) = > = . 8 The value ofA; was determined empirically by using
% ar 2 — <§>2 a Monte Carlo sampling method. A Monte Carlo routine
\Nr2—¢g2 2 was written to randomly plade circles of radius within

L . ) a rectangle of thicknedsand heigh#H, where the values
The probability distribution is then integrated to find the 5 these parameters were the same as defined for the six

cumulative probability distributioiCPD): cases to be examined. Again, disks were not permitted to
A e overlap any other disks or any of the boundaries of the

P(A) = f p()dA=1— [1— <_) _ (9)  rectangle. If no circles fell along the horizontal line of

0 2r lengthL in the center of the rectangle, then a positive

: ... scorewas tallied. This process was repeated many times,
The CLS algorithm uses the chord-length distribu-34 the probability of 0 circles falling on the line was

tion of Eq.(9) to sample all chords within the circles of ¢qicyjated. The probability that no circles fall on the
the binary stochastic mixture. This is done out of necesgrizontal line is denoted bp(0). This probability can

sity since the true distribution of chords from within the 5154 pe interpreted as the probability of chord lengths
disk is not known. Equatiof®) is strictly valid only for . greater than length in material 1. From this interpreta-

the first sampled chord after the particle enters the cirgqq an expression fdP(0) can be obtained by integrat-
cle. After the particle penetrates the circle, the distanc§.1g iEq.(ll) over the appropriate limits:

to the interface values would be smaller than the chor

lengths on average. Qualitatively, this implies that the P(O) =P(A, > (L—2r))

use of the Eq(9) CPD for sampling all chord lengths

within a circle may underpredict the probability of a par- _ f"o 1 A | g (12)
ticle to escape a circle. This in turn may cause an under- o\ Xy € X

prediction of the overall leakage probabilities for the

problem. However, for highly absorbing material 0 re-  Note that the limits of this expression take into ac-
gions, it is expected that this approximation will not havecount the diamete(2r) of the disks. This is required

a significant impact on the results. The LCLS algorithmsince over the horizontal distant¢e and allowing no
only uses the chord-length distribution of £f) to sam- overlap of disks with the boundaries, the permissible
ple the first chord. This chord is then used to fix therange of the disk coordinates spans a distande-of2r.
coordinates of an explicit disk. OnceP(0) is known empirically, then the average chord
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length can be determined by evaluating the integral ins unknown. The estimated standard deviation of the

Eqg. (12 and solving forA;: ensemble-averaged result is equal to
PR (13) S
L7 nP) S =N (16)
ITER

For given values oN, r, L, andH stated for this
problem,P(0) was determined to be 0.3393 based on
two million realizations of the mixture. Based on this IV. RESULTS
value, A, was then calculated using E@.3) and deter-

mined to be 17.58 cm. Table Il shows the leakage results through all four

walls for the six cases. Leakage results were calculated
using the benchmark algorithm and the two CLS algo-
rithms. For comparison purposes, results were also cal-
culated by homogenizing the interaction cross sections

Solution of the stochastic transport equation withOf both materials into a single averaged material. This

traditional Monte Carlo techniques is accomplished b)yvas done to verify that statement made earlier that a

simulating the transport of a given number of particIeszmgleagarng?ee?gsajfsn ?;é?fdsg dpgﬁblzgifﬁ;;c;:?rzr%e
through a unique geometrical realization of the stochas- ) P

tic mixture. For each physical representation, a numbegStimated errors of the ensemble-averaged results, cal-

of particle histories is simulated, and results are tallied Culated using Eq(16). . .

for the quantities of interegfor example, flux, reaction The value o_fP(O) used in the_two CLs algorl_thms

rate, leakage, etc.The simulation is then repeated for a Vas 0-3393. This value was obtained by simulating two
million realizations of the stochastic mixture and tally-

large number of realizatiorjs The ensemble average of ing the number of times a realization was created in which

all the individual results is then estimated from the pop- o disks overlanped the axis as shown in Fig. 1. The
ulation of results that have been gathered. For the CL X pped th . rlg. L.
Time required to empirically determin(0) is not in-

and LCLS algorithms, the number of histories per real ; e . .
ization is effectively one. In order to provide one-to-oneCUded in the timing studies. Itis expected that for future
. studies, an analytical approximation B€0) will be es-

efficiency comparisons against the CLS and LCLS algos blished as a function of disk radius, the number of

rithms, benchmark results are also computed using onl isks, and the region height and widtH,W). Table Il

one history per realization. For all three algorithms, the SO .
ensemble-averaged result is estimated as shows the relative timing results for each algorithm and

for each case. Timing results are presented as relative to

I1l. STANDARD DEVIATION OF
MONTE CARLO RESULTS

NiER the time required to determine the benchmark result.
Xi
- j=1
% = ‘N , (14)
ITER V. CONCLUSIONS
wherex; is the tally result for realization and Nirgg is
the number of realizations. The results of Table Il show that both algorithms

There are two useful statistical quantities associatedrovide exact results for the purely absorbing case but
with this ensemble-averaged result. The first is the starprovide different levels of accuracy as scattering is in-
dard deviation of the population of results froNyegr  troduced in the problems. For the purely absorbing case,
realizations. This parameter describes the variability ifboth algorithms are within the statistics of the bench-
results between successive realizations due both to theark method. This case is a Markovian transport prob-
stochastic method of particle transport and the stochagem, and assuming that the chord-length distributions
tic nature of the geometry. The standard deviation ofire correctly represented, then the solution for such a
the population ofNtgr results is estimated using the case is expected to be exact.

expression Once scattering is introduced in a problem, neither
Nirer 1/2 algorithm is exact since neither keeps track of prior
> x? events and conditions. Furthermore, for the CLS algo-
= . rithm, it has been stated that for the scattering cases the
Sy = Noen 3 - (19  chord-length distribution within a disk becomes more

approximate. This is because the derived chord-length
The second statistical quantity is the estimated stardistribution is strictly applicable only for chords span-
dard deviation of the ensemble-averaged result itself. Thising the entire disk. For a particle within a disk, the
quantity is a measure of the accuracy of the ensemblalistance to the interface is only approximately repre-
averaged quantity relative to the “true” quantity, whichsented by this distribution. Therefore, we have two
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TABLE I
Calculated Fractional Leakage Results for Six Cases*
Reflection Through Leakage Through Leakage Through Leakage Through
Solution Left Wall Right Wall Top Wall Bottom Wall
Method (T2 (T2 (T3) (T3)
Case l(absorbingt scattering: X, 0= 10,%50= 10,3, = 0.01,%5; = 0.01
Benchmark 0.056%0.0006 0.249(0.002 0.0057(0.0002 0.0058(0.0002
CLS 0.0231(0.0005 0.238(0.002 0.0030(0.0002 0.0031(0.0002
LCLS 0.0582(0.0008 0.247(0.002 0.0059(0.0002 0.0057(0.0002
Atomic mix 0.1148(8.05E-5)2 2.1E-7 (6E-8) 6.3E-9 (3E—-9) 3.3E-9 (1.5E-9)
Case 2absorbing: 2,0=10,3%50=0.0,3,1=0.01,25; = 0.0
Benchmark 0.0 0.281.002 0.0 0.0
CLS 0.0 0.2820.002 0.0 0.0
LCLS 0.0 0.281(0.002 0.0 0.0
Atomic mix 0.0 3.23E-4 (1.04E-5) 0.0 0.0
Case J(scattering: 2,0=0.0,250=10,3,1=0.0,35, = 0.01

Benchmark 0.39%0.002 0.460(0.002 0.073(0.00) 0.073(0.00)
CLS 0.324(0.002 0.503(0.002 0.086(0.001 0.088(0.00)
LCLS 0.388(0.002 0.464(0.002 0.074(0.001 0.074(0.00)
Atomic mix 0.773(0.0002 0.132(0.0002 0.047(0.0002 0.047(0.0003

Case 4(absorbingt scattering: 250 =10,3%50=10,%5,=0.0,25;=0.1
Benchmark 0.2270.002 0.0999(0.001 0.0134(0.0005 0.0125(0.0005
CLS 0.184(0.00)) 0.092(0.001 0.0102(0.0003 0.0102(0.0003
LCLS 0.222(0.00) 0.100(0.001 0.0128(0.0009 0.0121(0.0009
Atomic mix 0.137(0.00008 1.6E-7 (4.8E-8) 3.5E-9 (1.5E-9) 7.6E-10(5.7E-10)

Case 5absorbingt scattering: 240 =10,3%50=10,%,,=0.0,25;=1.0
Benchmark 0.63%0.002 0.0010(0.0001 0.00036(0.00008 0.00034(0.0000%
CLS 0.568(0.002 0.0003(0.0001) 0.00018(0.00004 0.00008(0.00003
LCLS 0.594(0.002 0.0004(0.0001 0.00020(0.00004 0.00020(0.00004
Atomic mix 0.261(0.0001) b b b

Case 6absorbingt scattering: 250 =10,3%50=10,%51,=0.0,25,= 2.5
Benchmark 0.7860.002 0.00017(0.00006 0.00003(0.00002 b
CLS 0.707(0.003 b b
LCLS 0.729(0.003 4e—6 (1e—6) 2e—6(7e-7) 2.8e-6(8e—7)
Atomic mix 0.376(0.0009) b b b

*Parentheses contairrlestimate.
aRead as 8.0% 105,
PNo tallies were scored across the wall for this case.

reasons to expect that the accuracy of the CLS algorithmause of the use of an approximate disk chord-length
will decrease as scattering in the system increases. Fdistribution.

the LCLS algorithm, there is no chord-length distri- For case 1, the CLS results for leakage through the
bution needed for the disks. Therefore, while LCLS isright wall (T2) are within 5% of the benchmark. This
vulnerable to error due to its assumption of Markoviangood agreement is expected since the predominant con-
transport, it does not contain the source of error betributor to the leakage through wall 2 is the uncollided
NUCLEAR SCIENCE AND ENGINEERING
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TABLE Il always sampled from the same distribution. The proba-
Relative Timing Comparison Between the Benchmark b”'ty_Of a particle escaping a disk after C0|_||d!ng IS a
and the Two-Chord-Length Sampling function only of the mean chord length and is indepen-
Algorithms for Six Cases dent of whether the scatter was forward or backward.
Qualitatively, therefore, the effect relative to the bench-
Solution Relative Solution Relative mark algorithm or LCLS is that the probability of a par-
Method Timing Method Timing ticle escaping a disk after a backscatter goes down, while
the probability of escaping a disk after a forward scatter
Casel Case4 goes up. This effect is not observed in case 1 because of
(absorbing+ scattering || (absorbing+ scattering the high absorption coefficient within the disks.
B The problem described above with the chord-length
enchmark 1 Benchmark 1 o : .
CcLS 0.1368 CLS 0.156 distribution used for chords in a disk also has a very
LCLS 0.1042 LCLS 0.132 strong negative impact on the computational efficiency
of CLS for the purely scattering case. Table Ill shows
Case 2 Case 5 that for case 3, CLS runs 88% more slowly than the
(pure absorbing (absorbing+ scattering benchmark method. This is due to the fact that the chord-
length distribution has a trapping effect on particles that
Benchmark 1 Benchmark 1 enter a disk. Because there is no absorption in the disks
CLS 0.0520 CLS 0.155 for this case, particles have no choice but to scatter within
LCLS 0.0446 | LCLS 0.2 a disk until they escape. Because the chord-length distri-
bution makes escape more difficult, the result is an in-
Case 3 Case 6 . - - .
(pure scattering (absorbing+ scattering crease in the time spent transporting the particles. The
reason why this increase in time is not as pronounced in
Benchmark 1 Benchmark 1 CLS for the other cases is due to the presence of high
CLS 1.887 CLS 0.157 absorption in material 0. Once absorption is introduced,
LCLS 0.1855 LCLS 0.223 the trapping effect of the chord-length distribution is not
as noticeable since particles are quickly absorbed in the
disks.

LCLS substantially reduces the errors obtained using
CLS by eliminating the need to sample chord lengths
particle fraction. For the leakage fractions that are moravithin the disks. For the first three cases, the LCLS re-
dependent on particle scattering, the CLS results are sigults for the cases examined are within a range-8%
nificantly different from the benchmark. For case 1, CLSin general relative to the benchmark results. The LCLS
underpredicts the particle reflection back out of the leftresults for cases 4, 5, and 6 show that accuracy degrades
wall (T1) by 59%. For this case, CLS also underpredictsas scattering is increased. The results for case 6, which
the leakage out of the top and bottom walls by 47 andhas the highest scattering coefficient for material 1, show
46%, respectively. The CLS algorithm also shows siga complete breakdown in accuracy for all results except
nificant differences as compared to the benchmark refor the reflected fraction, which is still within 10% of the
sults for the purely scattering probleirase 3. For case benchmark.
3, predicted leakage through the right wall has the small- LCLS also shows considerable computational sav-
est error and is 9% higher than the benchmark resultngs relative to the benchmark algorithm. Time savings
Reflection back out the left side is 18% lower than thefactors from LCLS, compared to the benchmark, are 9.6,
benchmark, while leakage through the top and botton22.4, and 5.4 for cases 1, 2, and 3, respectively. Time
walls was~19% high for the CLS algorithm relative to savings decrease as scattering increases. This is due to
the benchmark. the fact that as the scattering probability increases, the
The fact that CLS overpredicts leakage and undertime required for particle transport goes up. In the bench-
predicts reflection for the purely scattering case is duenark algorithm, as the time requirement for particle trans-
primarily to the chord-length distribution that was usedport goes up, the time requirement to sample each
for chords in a disk. In the benchmark algorithm as wellrealization relative to the total job time goes down.
as LCLS, a given disk is fixed in space. If that disk has a
high interaction coefficient, it is likely that a particle
will penetrate the disk only a small distance before hav-
ing a collision. At that collision point, the distance for- REFERENCES
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