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Abstract –Monte Carlo algorithms are developed to calculate the ensemble-average particle leakage
through the boundaries of a two-dimensional binary stochastic material. The mixture is specified within a
rectangular area and consists of a fixed number of disks of constant radius randomly embedded in a matrix
material. The algorithms are extensions of the proposal of Zimmerman et al., using chord-length sampling
(CLS) to eliminate the need to explicitly model the geometry of the mixture. Two variations are considered.
The first algorithm uses CLS for both material regions. The second algorithm employs limited CLS
(LCLS), using only CLS in the matrix material. Ensemble-average leakage results are computed for a
range of material interaction coefficients and compared against benchmark results for both accuracy and
efficiency. Both algorithms are exact for purely absorbing materials and provide decreasing accuracy as
scattering is increased in the matrix material. The LCLS algorithm shows a better accuracy than the CLS
algorithm for all cases while maintaining an equivalent or better efficiency. Accuracy and efficiency
problems with the CLS algorithm are due principally to assumptions made in determining the chord-length
distribution within the disks.

I. INTRODUCTION

Interest has continued to grow in recent years regard-
ing methods that solve the particle transport equation for
systems whose material properties are only known in a
statistical sense.1–16Thesestochastic mixturesystems by
definition contain two or more immiscible materials ar-
ranged randomly. The special case of two immiscible
materials in a random arrangement is referred to as a
binarystochastic mixture. The binary stochastic mixture
has received particular attention in the literature because
of its relative simplicity and applicability to a number of

physical problems. These applications include stochastic
stellar or atmospheric media,1–3 heterogeneous shield
material,4 two-phase coolant, or fractured geological
material.5

The statistical nature of the geometry of a stochastic
mixture adds a significant complication to the solution
of the underlying transport equation. Because the mate-
rial properties are at best only known statistically, it is
not possible to explicitly model the material properties
of the problem. The transport equation in its traditional
form therefore cannot be directly applied to a stochastic
mixture. Because the material properties are not known
explicitly, the particle flux as a function of position is a
spatially random quantity that is very difficult to compute*E-mail: donovat@KAPL.gov
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deterministically. Exact analytical solutions for trans-
port in a binary stochastic medium can be derived only
for simple cases6 and are of limited usefulness. The ideal
approach to the stochastic mixture problem would be to
find a method to determine the probability distribution
function ~PDF! of the flux c~r !. However, because this
approach is rarely feasible, most methods are concerned
with determining the ensemble-averaged flux. Some meth-
ods have also been developed to determine the second
moment, or the variance7 of the flux.

A general stochastic transport model was developed
by Adams, Larsen, and Pomraning.8 This model is valid
for a binary stochastic mixture with Markovian mixing
statistics. Markovian mixing statistics are defined by

P~i r j ! 5
ds

l i ~s!
, j Þ i , ~1!

whereP~i r j ! is the differential probability that, start-
ing from materiali , points1 ds is in materialj Þ i . The
l i ~s! parameters are the Markovian transition lengths
that completely define the statistics of the mixture. For
homogeneous mixing statistics the transition length is
independent ofsand can be interpreted as the mean chord
length through packets of materiali and in directionV.
Although exact for the specified mixing statistics, the
difficulty with the Ref. 8 model is that it is not closed
since it contains two equations and four unknowns. The
additional two unknowns are interface ensemble-averaged
flux contributions, conditional upon the position[r being
on the interface between materiali and materialj. These
additional terms can be interpreted as additional source
terms in the stochastic transport equation accounting for
particles leaving one material and entering the other. A
number of efforts have been made to provide closure to
this model. These efforts range in complexity from the
simple and well-known Levermore approximation8 to
higher-order closure schemes of varying complexity.9–12

The accuracy of some of these closure methods was stud-
ied by Malvagi and Pomraning,13 who concluded, as ex-
pected, that accuracy is improved with increased model
complexity.

The complexity of the coupled stochastic transport
equation, especially when combined with higher-order
closure equations, makes this problem extremely chal-
lenging to solve. Most recent efforts have presented de-
terministic methods or hybrid deterministic0Monte Carlo
methods for solving these types of problems. These hy-
brid methods use Monte Carlo only in a loose definition
of the technique in that random sampling is used only to
generate many individual realizations of the random mix-
ture that are then solved using deterministic methods.
Analog Monte Carlo techniques have mostly been ap-
plied only to compute so-called “benchmark” results.5,8,14

These benchmark results have then been used in provid-
ing comparisons to results obtained using these alternate
methods.

Calculation of benchmark results for stochastic mix-
tures using Monte Carlo is a very costly exercise. The
ensemble-averaged transport solution is computed in the
following way:

1. Build a specific realization of the stochastic mix-
ture by sampling from the given mixing statistics.

2. Perform a Monte Carlo simulation for that spe-
cific realization and tally the quantities of interest.

3. Repeat for a large number of realizations, and
average the results.

This method is exact in the limit of probability as the
number of realizations approached infinity. However, this
method is too costly to be practical for routine use.

Zimmerman and Adams14 and Zimmerman15 rea-
soned that the mixing statistics for a binary mixture could
be incorporated into the Monte Carlo transport solution
to provide an approximation of the ensemble-averaged
solution. This is a natural extension of the Monte Carlo
method, which is based on random sampling from known
probability distributions. Zimmerman and Adams pro-
posed three algorithms of increasing complexity based
on chord-length sampling~CLS!. These algorithms were
used to compute leakage and reflection results for one-
dimensional~1-D! rod geometry problems. These results
showed that the pure CLS method is equivalent to solv-
ing the Levermore equations. Furthermore, the retention
of information about the sampled material distribution
was shown to improve accuracy at the cost of increased
computational complexity.

The reported early success of Monte Carlo CLS
methods by Zimmerman and Adams for simple 1-D
stochastic mixture problems warrants further investiga-
tion of the use and performance of these techniques in
multidimensional problems. The extension of these tech-
niques becomes more important considering the increas-
ing dependence on Monte Carlo methods for tackling
large multidimensional problems combined with the in-
creasing computing power available to bring to bear on
such problems. Given the wide list of applications that
deal with stochastic mixtures, the ability to model sto-
chastic mixtures within large-scale models using a
powerful standardized Monte Carlo code could find a
considerable audience. Such a capability would elimi-
nate the need to either model such mixtures as homo-
geneous, a simplification that is known to be of limited
validity,13,16 or spend the considerable effort to explic-
itly model the stochastic mixture.

The purpose of this work is to extend the concept of
CLS into a specified two-dimensional~2-D! problem.
A pure CLS technique, as well as the derivations of
the appropriate chord-length distributions, is described
for the problem. In addition, a second technique is de-
veloped that eliminates CLS in one of the materials.
Ensemble-averaged results obtained with both techniques
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are then compared to benchmark results obtained using
standard Monte Carlo. Results are also compared to re-
sults generated using a simple homogenization of the
stochastic mixture in order to show that for the problems
investigated, the homogenization technique does not pro-
duce acceptable results.

II. ANALYSIS

II.A. Description of Problem

Figure 1 represents the 2-D stochastic mixture to be
analyzed. The bounding area for the problem is a rectan-
gle of arbitrary dimensions. The particle source will be
defined as originating outside of the bounding volume
and incident on the left side. For simplicity, the source is
defined to be a pencil beam normal to the rectangle wall.
This problem is monoenergetic in order to simplify the
analysis. However, energy dependence in the source and
material interaction coefficients could easily be included
without altering the CLS algorithms that are of principal
concern.

The binary stochastic mixture consists of disks of
radiusr and material 0 surrounded by a matrix of mate-
rial 1. Materials 0 and 1 possess both absorption and
scattering coefficients. Scattering is treated as isotropic
in the lab system, meaning that a particle’s exiting direc-
tion, theta, is sampled uniformly from 0 to 2p. The in-
teraction coefficients of both materials will be varied for
different cases. The number of disks contained in the
rectangle is fixed for all problems. Disks are randomly
placed within the rectangle with the constraint that they
may not overlap other disks or the rectangle boundaries.

The goal of the analysis is to calculate the mean
leakage through each of the four walls of the bounded
area. Leakage means the fraction of source particles that
escape the system by passing through each of the four

walls. The second goal of this analysis is to compare the
computational efficiency of the two algorithms to that of
the benchmark method. Since the absolute times will
vary significantly between platforms, these results are
normalized by the elapsed time required for the bench-
mark results in each case.

Six cases were selected to cover a range of inter-
action coefficients. Table I gives the materials’ inter-
action coefficients for the six cases.

The physical dimensions of the bounding rectangle
are the same for each problem. The widthW and height
H are fixed at 20 and 50 cm, respectively. The number of
disks N in each problem is also kept fixed at 50. The
radius of each disk is fixed at 0.5 cm for each case. The
six cases represent a pure scattering case, a pure ab-
sorber case, and four cases of varying absorptive and
scattering characteristics. For cases 1, 2, and 3, the mag-
nitudes of the interaction coefficients are chosen to rep-
resent the commonly referenced case of a sparse “black”
material~M0! randomly mixed within an optically thin
matrix material~M1!. Reference 16 discusses this spe-
cial case and the fact that the commonly applied “atomic
mix” model, wherein the stochastic mixture is converted
to a homogeneous material of volume-fraction-averaged
interaction coefficients, cannot be expected to provide
accurate results. In order to show that this is true, results
are computed for all six cases using a simple homogeni-
zation of interaction coefficients.

Cases 4, 5, and 6 have the same interaction coeffi-
cients for material 0 as case 1, but the absorption coef-
ficient of material 1 is zero. For these cases, the scattering
coefficient of material 1 is increased in order to study the
effects on the accuracy of the Monte Carlo algorithms.

II.B. Benchmark Method

Figure 2 is a flow diagram that describes the
Monte Carlo algorithm used to generate benchmark

Fig. 1. Binary stochastic mixture: disks embedded in a matrix;Sa, i is absorption coefficient of materiali ~cm21!, andSs, i is
scattering coefficient of materiali ~cm21!.
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ensemble-averaged leakage results for the stochastic mix-
ture problem. Results generated by this benchmark
method provide “true” results that can be compared
against results obtained by more approximate methods.
Ensemble-averaged leakage results obtained by the
benchmark method are exact in the limit as the number
of realizations approaches infinity, even if the number
of histories per realization is only one. For the bench-
mark method, only one particle history is simulated
per realization. This is necessary in order to provide a
fair efficiency comparison to the two CLS algorithms
that effectively sample a different realization for each
particle.

A Monte Carlo code was written that follows the
sequence of Fig. 2 to calculate benchmark ensemble-
averaged leakage results for the problems of interest.
Homogeneous mixing of the disks for a given realization
within the rectangle is achieved by randomly sampling
the coordinates of each disk successively within the
bounding area. Sampled disks are not permitted to over-
lap either on previously sampled disks or on the area
boundaries. Once the realization is specified, then source
particles are sampled from the source distribution for the
problem, and transport is simulated through the area un-
til the particles either escape the boundary or are killed.
Particle absorption is simulated implicitly using the weight
reduction method rather than explicitly terminating the
particle. When particle weightW drops below a weight
cutoff limit C2, a random number is sampled in the range
~0,1!. If the random number is greater thanWdivided by
a second cutoff limit C1, then the particle is terminated,
and a new history is begun. If the random number is less
thanW0C1, then the particle weight is increased to C1,
and the particle history is continued. This variance re-
duction method is common and is the same as used, for
example, by the MCNP Los Alamos Monte Carlo parti-
cle transport code.17

II.C. Chord-Length-Sampling Algorithm

Figure 3 describes the CLS algorithm used in this
work. Zimmerman and Adams14 and Zimmerman15 first
proposed the basic premise for this algorithm for track-
ing particles through a stochastic mixture. The impor-
tant feature of this method is that it does not model the
binary mixture explicitly. This eliminates the need to
model a large number of complete physical realizations
of the problem. Instead, the material identity for a given
location is treated as a characteristic of the source parti-
cle. This capability could have significant advantages
for a stochastic mixture containing thousands of ran-
domly dispersed volumes. Instead of explicitly model-
ing all material volumes, all that is required are the
material probabilities~volume fractions! and the chord-
length distributions in each material.

Since the source particles are defined to enter the
rectangle from the outside, the initial material identifier
for the source particles is always chosen to be material 1.
After the source particle’s initial characteristics are sam-
pled, three distance calculations are made. First, the dis-
tance between the particle and the system boundaryDB

is computed. The second calculation is the distance to
collision DC; DC is sampled using the current material’s
total interaction coefficient. These two distances are al-
ways computed in a Monte Carlo particle-tracking algo-
rithm. The last distance calculation is of the distance
between the particle and the material interfaceDI . In
this algorithm,DI is sampled from a chord-length distri-
bution for the sampled material. The use of CLS reduces
the calculation of the minimum distance to a disk to a
simple sampling from a known probability distribution.
The three distances are compared, and the minimum dis-
tance dictates which event occurs.

If DB is the minimum distance, then the particle es-
capes the system. The wall through which the particle

TABLE I

Material Scatter and Absorption Coefficients for Six Cases

Case Number

Material 0
Scatter

Coefficient
Ss,0

~10cm!

Material 0
Absorption
Coefficient

Sa,0
~10cm!

Material 1
Scatter

Coefficient
Ss,1

~10cm!

Material 1
Absorption
Coefficient

Sa,1
~10cm!

1 ~absorbing1 scattering! 10 10 0.01 0.01
2 ~pure absorbing! 0 10 0 0.01
3 ~pure scattering! 10 0 0.01 0
4 ~absorbing1 scattering! 10 10 0.1 0
5 ~absorbing1 scattering! 10 10 1.0 0
6 ~absorbing1 scattering! 10 10 2.5 0
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escaped is noted, and leakage is tallied. A new particle
history is then begun. IfDC is the minimum, then a col-
lision is sampled. The particle’s position is updated, and
weight is reduced at each collision site based on the sur-
vival probability. As described in Sec. II.B, particle rou-
letting is performed if the particle weight drops below a
specified value. If the particle survives the collision~i.e.,
is not rouletted!, then a new direction is sampled, and
the distance calculations are repeated. Finally, if the dis-
tance to the material interface is the minimum distance,

then the particle advances to the material interface, and
the material identifier is switched. After the particle’s
position and material are updated, then the distance cal-
culations are repeated, and the particle is tracked until it
escapes or is rouletted.

The weakness of the CLS algorithm lies in the fact
that the particle’s past is ignored after each collision event.
By allowing the particle’s future to be independent of its
past, the CLS algorithm inherently assumes that the trans-
port of a particle in a stochastic mixture is a Markovian

Fig. 2. Monte Carlo algorithm for determining the benchmark ensemble-averaged solution for a stochastic mixture.
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process. In a Markovian transport process, the particle’s
prior interactions have no effect on the future inter-
actions of the particle.5 ~Note the distinction between
the use of the terms “Markovian Transport,” which re-
lates to a characteristic of the transport in a region, and
“Markovian mixing statistics,” which specify an expo-

nential distribution of chord lengths between material
boundaries.!

Transport through a homogeneous material is
Markovian. However, particle transport through a het-
erogeneous material such as a stochastic mixture is
not a Markovian process because the distances to the

Fig. 3. CLS method.
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surrounding material interfaces depend on the past tra-
jectory of the particle. By resampling the distance to the
material interface following each collision, it is possible
that the particle will be in a different material at one
point in its history than it was in at the same position
earlier in its history. Obviously, in general, this is not
physically possible. The only location where it would be
possible for a particle to encounter either material at the
same location is at the interface between the materials.

By allowing the material to be resampled at any po-
sition during a particle history, the CLS algorithm effec-
tively makes the same assumption as the Levermore
approximation—that the average flux across material in-
terfaces is equal to the average flux across the interior
points. It must be noted here that for the problem de-
fined, that of disks of uniform radius randomly mixed
within a matrix, the mixing statistics are not strictly Mar-
kovian. The chord-length distribution in material 1 can
be approximated by an exponential relation as we show
later, but the distribution in material 0 cannot. Because
the Levermore approximation is defined for a system
with Markovian mixing statistics, the comparison made
between it and the CLS Monte Carlo algorithm is only
intended to be approximate.

For the case of purely absorbing materials for which
exact chord length distributions are known, the CLS al-
gorithm is expected to be exact. This statement can be
easily understood when one considers that for the pure
absorber, a particle can move only forward. Its past has
no influence since there is no mechanism to scatter a
particle back into a region through which it has already
passed. Since the past is irrelevant to the particle in a
purely absorbing medium, the transport is Markovian.
Therefore, if the chord-length distributions are known
exactly, then the CLS algorithm yields exact results. As
scattering becomes more dominant in a given problem,
the transport becomes more non-Markovian, and the ac-
curacy of the CLS algorithm will deteriorate.

II.D. Limited-Chord-Length
Sampling Algorithm

In order to account for the non-Markovian nature of
the transport process for stochastic mixtures, the effects
of the particle’s past have to be taken into account in the
determination of the next event. The limited-CLS~LCLS!
algorithm combines the CLS technique with limited ex-
plicit geometric representation of the stochastic mixture.
This is done in order to reduce the errors that result from
the assumption of Markovian transport implicit in the
pure CLS algorithm. Instead of using CLS, the algorithm
takes advantage of the closed, simple geometry of the
material 0 disks and treats these regions explicitly. CLS
is used for transport through material 1 and to specify
the location of material 0 disks. Once a disk’s location is
specified, particle transport through the disk is done using
traditional Monte Carlo. After the particle exits a disk,

no memory of the disk is kept. Figure 4 shows a calcu-
lational schematic for the LCLS algorithm.

By modeling individual disks explicitly, this algo-
rithm maintains a limited amount of memory regarding
the particle’s past. This “partial memory” capability pre-
vents a particle within an explicit material 0 disk from
suddenly finding itself within material 1 without first
escaping the disk. The LCLS algorithm reduces the as-
sumption of pure Markovian transport made by the CLS
algorithm. However, it is not entirely eliminated since
each disk is discarded as soon as a particle exits it. There-
fore, upon backscatter from within material 1, the parti-
cle could “see” a disk where there had previously been
none, or vice versa. The concept of applying partial mem-
ory was also proposed by Zimmerman and successfully
applied in limited 1-D slab problems. However, the im-
plementation of partial memory for the binary stochastic
mixture of this problem is unique.

The method for explicitly modeling a material 0 disk
is now described. While in material 1,DB is calculated,
DC is sampled, andDI is sampled from the material 1
chord-length probability distribution. IfDI is determined
to be the minimum distance, then another sampling
scheme is followed to determine the coordinates of the
sampled disk. The location where the particle would cross
into a material 0 disk is calculated based on the particle’s
position, its direction, andDI . As shown in Fig. 5, two
random numbers are then sampled to determine the co-
ordinates of the disk. The first random numberj1 sam-
ples a chord lengthl0 from the probability distribution
for a disk. The second random number determines the
sense~6! of the center of the disk relative to the chord.

After the coordinates of the disk have been sampled,
the restriction that the disk may not overlap the bound-
ary of the problem is tested. This is done by calculating
the distances in thex andy directions from the disk co-
ordinates to the four bounding walls of the problem. If
any of the distances are less than the radius of the disk,
then the sampled disk overlaps one of the boundary walls
and is not accepted. Once a disk is rejected for overlap-
ping the boundary, the value ofDI is reset to a “huge”
value. The next event in the transport of the particle is
based on the comparison ofDB and DC. If the disk is
accepted, then the particle is moved forward to the inter-
section point, and transport through the disk is performed.

II.E. Derivation of the Chord-Length
Distributions

The 2-D binary stochastic mixture of interest con-
sists of disks of material 0 randomly mixed within a
second material, material 1. Since there are two distinct
material types in this mixture, there are two correspond-
ing sets of chord-length distributions. These chord-
length distributions describe the probability that a chord
of lengthdx aboutx~ p~x!dx! may be encountered as a
ray makes a track though either material.
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II.E.1. Material 0~Disk! Chord-Length
Distributions

The chord-length distribution for the disk of radiusr
will be derived first. In the case of a circle~disk!, a chord

is defined as a line segment whose endpoints both lie on
the circle. The chord of a circle is also perpendicular to
the radial line containing the midpoint of the chord. The
derivation of the chord-length distributions for mate-
rial 0 is fairly straightforward. We desire to determine

Fig. 4. LCLS method.
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the probability distribution of chords that are “randomly
distributed” in a circle. The solution to this problem is
dependent on exactly how the chords are randomly dis-
tributed. This phenomenon was first observed by Ber-
trand and is now known as Bertrand’s Paradox.18 The
different methods of defining random chords in a circle
have been examined by Jaynes.19 Jaynes showed that the
“natural” chord-length designation was that in which the
polar coordinates of the chord midpoint~j,u! are sam-
pled randomly, wherej andu are shown relative to the
circle in Fig. 6.

Looking at Fig. 6, one sees it is apparent that any
rotation of the circle does not change the length of the

chord. Since the angle of rotation does not affect the
chord distribution, we can then simplify the derivation
of the chord-length distribution by assuming that the chord
is horizontal, meaning thatu 5 0. The chord-length dis-
tribution then becomes that of a disk placed in a parallel
beam.

To determine the transformation between the chord
lengthl and the random variablej, we equate

p~l!dl 5 p~j!dj . ~2!

Rearrange Eq.~2! to separate the probability distribution
for the chord length and obtain

Fig. 5. Determination of disk coordinates for the LCLS algorithm.

Fig. 6. “Random” chord in a circle.
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p~l! 5
p~j!

* dl

dj *
. ~3!

The random variablej is distributed uniformly from
0 to r:

j 5 ~0,r ! , ~4!

wherer is the radius of the circle. Therefore, the proba-
bility distribution for j is simply

p~j! 5
1

r
. ~5!

The relationship between the sampled variablej and
the chord lengthl is given from the equation for the
circle,

l 5 2M r 2 2 j2 . ~6!

Taking the derivative of this expression yields

* dl

dj * 5
2j

M r 2 2 j2
. ~7!

Substitute Eqs.~5! and~7! into ~3! to yield the PDF for
the chord length:

p~l! 5

1

r
2j

M r 2 2 j2

5
l

4r! r 2 2 Sl

2D2
. ~8!

The probability distribution is then integrated to find the
cumulative probability distribution~CPD!:

P~l! 5 E
0

l

p~l! dl 5 1 2 !12 S l

2r
D2

. ~9!

The CLS algorithm uses the chord-length distribu-
tion of Eq.~9! to sample all chords within the circles of
the binary stochastic mixture. This is done out of neces-
sity since the true distribution of chords from within the
disk is not known. Equation~9! is strictly valid only for
the first sampled chord after the particle enters the cir-
cle. After the particle penetrates the circle, the distance
to the interface values would be smaller than the chord
lengths on average. Qualitatively, this implies that the
use of the Eq.~9! CPD for sampling all chord lengths
within a circle may underpredict the probability of a par-
ticle to escape a circle. This in turn may cause an under-
prediction of the overall leakage probabilities for the
problem. However, for highly absorbing material 0 re-
gions, it is expected that this approximation will not have
a significant impact on the results. The LCLS algorithm
only uses the chord-length distribution of Eq.~9! to sam-
ple the first chord. This chord is then used to fix the
coordinates of an explicit disk.

II.E.2. Material 1 Chord-Length Distributions

It does not appear feasible to analytically derive the
chord-length distribution for chords between the disks.
Su and Pomraning2 examined this problem and showed
that by assuming fixed circle chord lengths equal to the
average chord length, in the limit for very large systems
with homogeneous mixing, the PDF for chords in mate-
rial 1 reduces to a Markovian model. We assume that the
Markovian model is an acceptable approximation for
chords in material 1 for this problem. This means that
the material 1 chords fall in an exponential distribution
of the form

p~l! 5
1

Nl1
{e2l{~10 Nl1! , ~10!

wherel is the chord length andNl1 is the mean chord
length through material 1. The CPD is obtained by inte-
grating Eq.~10!:

P~l! 5 E
0

l

p~l! dx5 1 2 e2~l0 Nl1! . ~11!

Equation~11! is a simple expression that can be used
to sample chords through material 1. A key difference
between this distribution and the distribution for mate-
rial 0 is that the mean chord length for material 1 must be
known or approximated in order to use the distribution.

The value of Nl1 was determined empirically by using
a Monte Carlo sampling method. A Monte Carlo routine
was written to randomly placeN circles of radiusr within
a rectangle of thicknessL and heightH, where the values
of these parameters were the same as defined for the six
cases to be examined. Again, disks were not permitted to
overlap any other disks or any of the boundaries of the
rectangle. If no circles fell along the horizontal line of
length L in the center of the rectangle, then a positive
score was tallied. This process was repeated many times,
and the probability of 0 circles falling on the line was
calculated. The probability that no circles fall on the
horizontal line is denoted byP~0!. This probability can
also be interpreted as the probability of chord lengths
greater than lengthL in material 1. From this interpreta-
tion, an expression forP~0! can be obtained by integrat-
ing Eq.~11! over the appropriate limits:

P~0! 5 P~l1 . ~L 2 2r !!

5E
L22r

` S 1

Nl1
{e2l1{~10 Nl1!D dx . ~12!

Note that the limits of this expression take into ac-
count the diameter~2r ! of the disks. This is required
since over the horizontal distanceL, and allowing no
overlap of disks with the boundaries, the permissible
range of the disk coordinates spans a distance ofL 2 2r.
OnceP~0! is known empirically, then the average chord
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length can be determined by evaluating the integral in
Eq. ~12! and solving for Nl1:

Nl1 5
2R2 L

ln~P~0!!
. ~13!

For given values ofN, r, L, and H stated for this
problem,P~0! was determined to be 0.3393 based on
two million realizations of the mixture. Based on this
value, Nl1 was then calculated using Eq.~13! and deter-
mined to be 17.58 cm.

III. STANDARD DEVIATION OF
MONTE CARLO RESULTS

Solution of the stochastic transport equation with
traditional Monte Carlo techniques is accomplished by
simulating the transport of a given number of particles
through a unique geometrical realization of the stochas-
tic mixture. For each physical representation, a number
of particle historiesi is simulated, and results are tallied
for the quantities of interest~for example, flux, reaction
rate, leakage, etc.!. The simulation is then repeated for a
large number of realizationsj. The ensemble average of
all the individual results is then estimated from the pop-
ulation of results that have been gathered. For the CLS
and LCLS algorithms, the number of histories per real-
ization is effectively one. In order to provide one-to-one
efficiency comparisons against the CLS and LCLS algo-
rithms, benchmark results are also computed using only
one history per realization. For all three algorithms, the
ensemble-averaged result is estimated as

S Sxj 5

(
j51

NITER

xj

NITER

, ~14!

wherexj is the tally result for realizationj andNITER is
the number of realizations.

There are two useful statistical quantities associated
with this ensemble-averaged result. The first is the stan-
dard deviation of the population of results fromNITER

realizations. This parameter describes the variability in
results between successive realizations due both to the
stochastic method of particle transport and the stochas-
tic nature of the geometry. The standard deviation of
the population ofNITER results is estimated using the
expression

Sxj
5 1 (

j51

NITER

xj
2

NITER

2 S Sxj
22

102

. ~15!

The second statistical quantity is the estimated stan-
dard deviation of the ensemble-averaged result itself. This
quantity is a measure of the accuracy of the ensemble-
averaged quantity relative to the “true” quantity, which

is unknown. The estimated standard deviation of the
ensemble-averaged result is equal to

S S Sxj

2 5
Sxj

2

NITER

. ~16!

IV. RESULTS

Table II shows the leakage results through all four
walls for the six cases. Leakage results were calculated
using the benchmark algorithm and the two CLS algo-
rithms. For comparison purposes, results were also cal-
culated by homogenizing the interaction cross sections
of both materials into a single averaged material. This
was done to verify that statement made earlier that a
simple homogenization of these problems could not pro-
duce accurate results. Included in parentheses are the
estimated errors of the ensemble-averaged results, cal-
culated using Eq.~16!.

The value ofP~0! used in the two CLS algorithms
was 0.3393. This value was obtained by simulating two
million realizations of the stochastic mixture and tally-
ing the number of times a realization was created in which
no disks overlapped thex axis as shown in Fig. 1. The
time required to empirically determineP~0! is not in-
cluded in the timing studies. It is expected that for future
studies, an analytical approximation ofP~0! will be es-
tablished as a function of disk radius, the number of
disks, and the region height and width~H,W!. Table III
shows the relative timing results for each algorithm and
for each case. Timing results are presented as relative to
the time required to determine the benchmark result.

V. CONCLUSIONS

The results of Table II show that both algorithms
provide exact results for the purely absorbing case but
provide different levels of accuracy as scattering is in-
troduced in the problems. For the purely absorbing case,
both algorithms are within the statistics of the bench-
mark method. This case is a Markovian transport prob-
lem, and assuming that the chord-length distributions
are correctly represented, then the solution for such a
case is expected to be exact.

Once scattering is introduced in a problem, neither
algorithm is exact since neither keeps track of prior
events and conditions. Furthermore, for the CLS algo-
rithm, it has been stated that for the scattering cases the
chord-length distribution within a disk becomes more
approximate. This is because the derived chord-length
distribution is strictly applicable only for chords span-
ning the entire disk. For a particle within a disk, the
distance to the interface is only approximately repre-
sented by this distribution. Therefore, we have two
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reasons to expect that the accuracy of the CLS algorithm
will decrease as scattering in the system increases. For
the LCLS algorithm, there is no chord-length distri-
bution needed for the disks. Therefore, while LCLS is
vulnerable to error due to its assumption of Markovian
transport, it does not contain the source of error be-

cause of the use of an approximate disk chord-length
distribution.

For case 1, the CLS results for leakage through the
right wall ~T2! are within 5% of the benchmark. This
good agreement is expected since the predominant con-
tributor to the leakage through wall 2 is the uncollided

TABLE II

Calculated Fractional Leakage Results for Six Cases*

Solution
Method

Reflection Through
Left Wall

~T1!

Leakage Through
Right Wall

~T2!

Leakage Through
Top Wall

~T3!

Leakage Through
Bottom Wall

~T3!

Case 1~absorbing1 scattering!: Sa,0 5 10, Ss,0 5 10, Sa,1 5 0.01,Ss,1 5 0.01

Benchmark 0.0565~0.0006! 0.249~0.002! 0.0057~0.0002! 0.0058~0.0002!
CLS 0.0231~0.0005! 0.238~0.002! 0.0030~0.0002! 0.0031~0.0002!
LCLS 0.0582~0.0008! 0.247~0.002! 0.0059~0.0002! 0.0057~0.0002!
Atomic mix 0.1148~8.05E25!a 2.1E27 ~6E28! 6.3E29 ~3E29! 3.3E29 ~1.5E29!

Case 2~absorbing!: Sa,0 5 10, Ss,0 5 0.0,Sa,1 5 0.01,Ss,1 5 0.0

Benchmark 0.0 0.283~0.002! 0.0 0.0
CLS 0.0 0.282~0.002! 0.0 0.0
LCLS 0.0 0.281~0.002! 0.0 0.0
Atomic mix 0.0 3.23E24 ~1.04E25! 0.0 0.0

Case 3~scattering!: Sa,0 5 0.0,Ss,0 5 10, Sa,1 5 0.0,Ss,1 5 0.01

Benchmark 0.395~0.002! 0.460~0.002! 0.073~0.001! 0.073~0.001!
CLS 0.324~0.002! 0.503~0.002! 0.086~0.001! 0.088~0.001!
LCLS 0.388~0.002! 0.464~0.002! 0.074~0.001! 0.074~0.001!
Atomic mix 0.773~0.0002! 0.132~0.0002! 0.047~0.0001! 0.047~0.0003!

Case 4~absorbing1 scattering!: Sa,0 5 10, Ss,0 5 10, Sa,1 5 0.0,Ss,1 5 0.1

Benchmark 0.227~0.002! 0.0999~0.001! 0.0134~0.0005! 0.0125~0.0005!
CLS 0.184~0.001! 0.092~0.001! 0.0102~0.0003! 0.0102~0.0003!
LCLS 0.222~0.001! 0.100~0.001! 0.0128~0.0004! 0.0121~0.0004!
Atomic mix 0.137~0.00008! 1.6E27 ~4.8E28! 3.5E29 ~1.5E29! 7.6E210 ~5.7E210!

Case 5~absorbing1 scattering!: Sa,0 5 10, Ss,0 5 10, Sa,1 5 0.0,Ss,1 5 1.0

Benchmark 0.635~0.002! 0.0010~0.0001! 0.00036~0.00008! 0.00034~0.00007!
CLS 0.568~0.002! 0.0003~0.0001! 0.00018~0.00004! 0.00008~0.00003!
LCLS 0.594~0.002! 0.0004~0.0001! 0.00020~0.00004! 0.00020~0.00004!
Atomic mix 0.261~0.0001! b b b

Case 6~absorbing1 scattering!: Sa,0 5 10, Ss,0 5 10, Sa,1 5 0.0,Ss,1 5 2.5

Benchmark 0.786~0.002! 0.00017~0.00006! 0.00003~0.00002! b

CLS 0.707~0.003! b b b

LCLS 0.729~0.003! 4e26 ~1e26! 2e26 ~7e27! 2.8e26 ~8e27!
Atomic mix 0.376~0.0001! b b b

*Parentheses contain 1s estimate.
aRead as 8.053 1025.
bNo tallies were scored across the wall for this case.
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particle fraction. For the leakage fractions that are more
dependent on particle scattering, the CLS results are sig-
nificantly different from the benchmark. For case 1, CLS
underpredicts the particle reflection back out of the left
wall ~T1! by 59%. For this case, CLS also underpredicts
the leakage out of the top and bottom walls by 47 and
46%, respectively. The CLS algorithm also shows sig-
nificant differences as compared to the benchmark re-
sults for the purely scattering problem~case 3!. For case
3, predicted leakage through the right wall has the small-
est error and is 9% higher than the benchmark result.
Reflection back out the left side is 18% lower than the
benchmark, while leakage through the top and bottom
walls was;19% high for the CLS algorithm relative to
the benchmark.

The fact that CLS overpredicts leakage and under-
predicts reflection for the purely scattering case is due
primarily to the chord-length distribution that was used
for chords in a disk. In the benchmark algorithm as well
as LCLS, a given disk is fixed in space. If that disk has a
high interaction coefficient, it is likely that a particle
will penetrate the disk only a small distance before hav-
ing a collision. At that collision point, the distance for-
ward a particle would have to go to escape the disk is
most likely greater than the distance backward the par-
ticle would have to go to escape the disk. In CLS, once a
particle collides within a disk, the distance to escape is

always sampled from the same distribution. The proba-
bility of a particle escaping a disk after colliding is a
function only of the mean chord length and is indepen-
dent of whether the scatter was forward or backward.
Qualitatively, therefore, the effect relative to the bench-
mark algorithm or LCLS is that the probability of a par-
ticle escaping a disk after a backscatter goes down, while
the probability of escaping a disk after a forward scatter
goes up. This effect is not observed in case 1 because of
the high absorption coefficient within the disks.

The problem described above with the chord-length
distribution used for chords in a disk also has a very
strong negative impact on the computational efficiency
of CLS for the purely scattering case. Table III shows
that for case 3, CLS runs 88% more slowly than the
benchmark method. This is due to the fact that the chord-
length distribution has a trapping effect on particles that
enter a disk. Because there is no absorption in the disks
for this case, particles have no choice but to scatter within
a disk until they escape. Because the chord-length distri-
bution makes escape more difficult, the result is an in-
crease in the time spent transporting the particles. The
reason why this increase in time is not as pronounced in
CLS for the other cases is due to the presence of high
absorption in material 0. Once absorption is introduced,
the trapping effect of the chord-length distribution is not
as noticeable since particles are quickly absorbed in the
disks.

LCLS substantially reduces the errors obtained using
CLS by eliminating the need to sample chord lengths
within the disks. For the first three cases, the LCLS re-
sults for the cases examined are within a range of63%
in general relative to the benchmark results. The LCLS
results for cases 4, 5, and 6 show that accuracy degrades
as scattering is increased. The results for case 6, which
has the highest scattering coefficient for material 1, show
a complete breakdown in accuracy for all results except
for the reflected fraction, which is still within 10% of the
benchmark.

LCLS also shows considerable computational sav-
ings relative to the benchmark algorithm. Time savings
factors from LCLS, compared to the benchmark, are 9.6,
22.4, and 5.4 for cases 1, 2, and 3, respectively. Time
savings decrease as scattering increases. This is due to
the fact that as the scattering probability increases, the
time required for particle transport goes up. In the bench-
mark algorithm, as the time requirement for particle trans-
port goes up, the time requirement to sample each
realization relative to the total job time goes down.
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